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Fig. 1: The Interface of Envisage includes four components: Query Expression Panel (A), Query Execution Panel (B), Result Overview
(C), and Result List (D). Users can flexibly perform visual graph querying by quickly constructing a graph structure (A1), applying
various rules (A2), verifying and executing the generated query instances (B), and analyzing the results (C and D).

Abstract—Graph querying is the process of retrieving information from graph data using specialized languages (e.g., Cypher), often
requiring programming expertise. Visual Graph Querying (VGQ) streamlines this process by enabling users to construct and execute
queries via an interactive interface without resorting to complex coding. However, current VGQ tools only allow users to construct
simple and specific query graphs, limiting users’ ability to interactively express their query intent, especially for underspecified query
intent. To address these limitations, we propose Envisage, an interactive visual graph querying system to enhance the expressiveness
of VGQ in complex query scenarios by supporting intuitive graph structure construction and flexible parameterized rule specification.
Specifically, Envisage comprises four stages: Query Expression allows users to interactively construct graph queries through intuitive
operations; Query Verification enables the validation of constructed queries via rule verification and query instantiation; Progressive
Query Execution can progressively execute queries to ensure meaningful querying results; and Result Analysis facilitates result
exploration and interpretation. To evaluate Envisage, we conducted two case studies and in-depth user interviews with 14 graph

analysts. The results demonstrate its effectiveness and usability in constructing, verifying, and executing complex graph queries.

Index Terms—Visual graph querying, interactive query construction, graph data
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1 INTRODUCTION

Graph data represents the relationships among entities and has become
widely used in various application domains, including social network
analysis [18], bioinformatics [55], and financial fraud detection [59].
Graph querying refers to the process of retrieving relevant informa-
tion (e.g., nodes, edges, and subgraphs) from graph data according to
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user-defined rules [62]. It is a fundamental operation for many graph
exploration tasks, such as node labeling [34], anomaly detection [36],
and pattern analysis [53]. Traditional graph querying methods typically
require users to construct text-based queries formulated in specialized
graph query languages such as Cypher [17] and GraphQL [23], which
are subsequently executed on graph databases like Neo4;j [39]. How-
ever, composing such queries using graph query languages typically
requires strong programming skills [6]. To address this problem, several
studies have proposed leveraging visualization and human-computer
interaction (HCI) techniques to simplify the query construction pro-
cess [7,11,13,43,55], which is referred to as Visual Graph Querying
(VGQ). Specifically, VGQ enables users to interactively construct graph
queries by dragging and linking nodes [7, 11,44], selecting predefined
subgraph examples [51], and imposing specific constraints on graph
nodes and edges [55]. Nevertheless, existing VGQ approaches pri-
marily support simple and fully-specified graph queries, such as small,
fixed subgraphs with attribute constraints. This limited expressiveness
restricts users’ ability to construct and refine queries flexibly using
such VGQ systems, particularly when addressing underspecified query
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intent, which is essential in many real-world scenarios [6]. In this paper,
underspecified query intent refers to a loosely defined graph pattern
that can match multiple possible queries, similar to how a regular ex-
pression can match a variety of string patterns [54]. For example, a user
may want to query a “connector” subgraph (i.e., two nodes connected
to a common set of intermediary nodes [15], as shown in Fig. 1EN),
without specifying the exact number of intermediary nodes.

We surveyed existing research on VGQ [5,6,37,44,51] and con-
ducted a preliminary study (Sec. 4.1) with four graph analysis experts
to identify the challenges in expressing graph query intent via existing
VGQ systems. Specifically, there are four major challenges (C1-C4)
in achieving expressive visual graph querying. C1. Full Expression
of Underspecified Graph Query Intent. Most existing VGQ tools
require users to define a concrete query graph structure. However, user
intent is often underspecified and cannot be fully captured by a fixed
graph structure. For example, a user may want to query a subgraph
with two loops connected by a path, where the number of nodes in each
component can be different. Such query intentions are common and
can be expressed using operators like the Kleene star in some graph
query languages [16], but are difficult to express using existing VGQ
tools. C2. Fast Specification of Repetitive Graph Structure. Users’
query intent may involve repetitive substructures, but existing VGQ
tools require users to manually construct each substructure, which is
inefficient and tedious. For the aforementioned “connector” pattern, it
would be highly time-consuming to manually create a large number
of intermediary nodes and connect them accordingly. This becomes
even more challenging when the repeated substructures are complex.
C3. Flexible Configuration of Node/Edge Attribute Constraints in
Graph Queries. Specifying attribute constraints (e.g., node labels or
edge attribute values) is essential for constructing graph queries [44].
However, existing tools like SIERRA [37] and Visage [44] typically
require users to edit these constraints for each node or edge individually,
which is laborious and time-consuming. As the number of necessary
constraints increases, it becomes increasingly difficult to review, verify,
and modify graph queries. C4. Effective Verification and Execution
of Query Instances. Even when users can express the aforementioned
underspecified query intent, the possible number of concrete query
instances reflecting their intended patterns can be enormous, which
demands an effective way to verify, select, and execute appropriate
graph query instances aligned with their query intent.

To address these challenges, we propose a novel expressive visual
graph querying framework and further develop Envisage, an interactive
visual analytics system to enhance the expressiveness of visual graph
querying. Envisage enables users to conduct visual graph querying
through four stages: Query Expression, Query Verification, Progressive
Query Execution, and Result Analysis. Users begin by expressing their
query intent, including underspecified intent (C1), through intuitive
operations such as customized motif configuration and parameterized
rule specification, where two types of rules (i.e., repeating and chaining)
help users efficiently define repetitive graph patterns (C2). Envisage
further enables quick configurations of attribute constraints for different
entities by specifying corresponding attribute rules (C3). Then, users
can check and confirm that their constructed graph query matches their
intended query by verifying their defined rules and the generated query
instances (C4). Users can also progressively execute query instances
to identify and rectify issues in the current graph query (C4). The
query results are displayed as a list of subgraphs (Fig. 1[), with
their distribution revealed in the input graph (Fig. 1{®). To evaluate
Envisage, we conducted two case studies and in-depth user interviews
with 14 graph analysts. The results demonstrate that Envisage enables
expressive visual graph querying, allowing users to effectively explore
graph data. Our main contributions are as follows:

* We formulate design requirements for flexibly expressing query
intent through visual graph querying, based on a preliminary study
with four graph analysis experts, and propose an interactive visual
graph querying framework to meet the requirements.

* We introduce Envisage, an interactive visual graph querying sys-
tem based on our proposed framework to help users express,

verify, and execute graph queries in a flexible and expressive way.

* We present two case studies and conduct in-depth user interviews
with 14 graph analysts to demonstrate the effectiveness and use-
fulness of Envisage.

2 RELATED WORK

This work is related to prior research on visual graph querying and
subgraph matching.

2.1 Visual Graph Querying

Given our focus on effectively expressing query intent, we compre-
hensively review the query construction processes of existing VGQ
methods. First, most VGQ systems, such as Graphite [11], Prague [28],
VOGUE [7], ViSual [8], and VIMO [55], require users to manually
build query graphs by interactively specifying each node and edge [6].
One exception is VIGOR [43], which accepts text-based queries and
focuses on visualizing both queries and results. Second, some sys-
tems adopt a “query-by-template” approach [44], enabling users to
construct queries from predefined graph templates quickly. For in-
stance, VisualNeo [25] enables users to construct a subgraph query
with multiple nodes and edges by performing a single click-and-drag
action. Likewise, Song et al. [51] enable users to conduct example-
based graph querying by allowing them to select a graph instance to
construct the query graph. Third, specifying constraints on attributes of
nodes and edges is essential for meaningful graph querying [11,44,51].
SIERRA [37] introduces visual abstraction, called labeled composite
graph, to represent attribute constraints in a visual graph query. Also,
some tools support interactions tailored to specific domain tasks and
graph types, such as knowledge graphs [57], multilayer networks [13],
bipartite networks [45], and hierarchical graphs [35].

Existing methods require users to construct concrete and fully-
specified query graphs, which is time-consuming and has no support
for underspecified query intent that are common in real-world applica-
tions. Envisage allows users to configure customized motifs and specify
parameterized rules to flexibly express their queries. Users can quickly
construct repetitive graph patterns and specify attribute constraints by
combining multiple rules. Furthermore, Envisage enables users to ver-
ify query instances derived from underspecified query intent, ensuring
that query execution aligns with their expectations.

2.2 Subgraph Matching

Subgraph matching aims to find all subgraphs g in a data graph G that
match a given query graph pattern g. Existing subgraph matching algo-
rithms can be categorized into three groups: backtracking-based, join-
based, and neural network-based approaches. Backtracking-based
approaches optimize depth-first search through filtering and pruning
techniques. Notable methods include VF2 [12], VF2++ [31], and DP-
iso [21], which reduces the search space via preprocessing. Many
graph databases integrate these techniques [22,23,46,47,50,65], with
GraphQL [23] improving efficiency through local pruning and global
refinement. Join-based approaches decompose queries into smaller
sub-patterns and then combine intermediate results through join opera-
tions, such as binary joins or generalized multi-way joins [1,3,33,38,52].
Cypher [23], Neo4j’s core query language, applies this approach to
property graphs. Neural network-based Approaches utilize graph
neural networks (GNNs) for approximate matching. GraphSAGE [20]
improves scalability, while Neuralign [51] builds upon it and enhances
dynamic graph alignment. GNN-PE [63] introduces exact matching
with path-dominance embeddings but is computationally expensive.

User-defined queries in Envisage are ultimately represented as in-
dividual subgraphs with attribute constraints, which can be readily
translated into query languages that support fundamental features like
subgraph matching, attribute filtering, and variable-length path match-
ing. Envisage adopts Cypher via Neo4j [40] for its user-friendly syntax
and robust support for property graph querying.

3 BACKGROUND

This section introduces background information, including graph query-
ing, graph definitions, and motif definitions.



3.1 Graph Querying

Graph querying refers to the entire process of interacting with a graph
database, from formulating high-level queries to retrieving results. Typ-
ically, users define the desired patterns using a specialized graph query
language. While graph databases support other query types, such as
traversal queries (e.g., “find the shortest path between two nodes”), our
work focuses specifically on pattern-matching queries. Depending on
the database (e.g., Neo4j [40], Amazon Neptune [2], ArangoDB [4]),
users may use different query languages such as Cypher [17], Grem-
lin [49], or SPARQL [42] to express these patterns, which are collec-
tively referred to as graph queries. The graph database then parses and
executes the graph queries, returning results in formats such as JSON,
tables, or graph visualizations. Visual graph querying replaces the
need to write queries in a graph query language with the construction
of query graphs through interactions with a graphical interface. These
query graphs, composed of nodes and edges with attribute constraints,
enable users to express their desired patterns. The query graphs are
then translated into graph query language statements and executed
by the underlying graph database. In this work, users can construct
a graph query representation to express their underspecified query
intent, which may correspond to multiple specific query graphs. We
refer to these derived, concrete query graphs as query instances.

3.2 Graph Definitions

In this work, we focus on visual graph querying over directed and
undirected multivariate graphs, where both nodes and edges can have
associated attributes. A multivariate graph is defined as a tuple G =
(V,E,Ay,Ag,X), where V is a finite set of nodes, E is a set of edges, and
¥ is a finite set of edge labels that allow multiple labeled edges between
the same node pairs. The functions Ay : V — %y and Ag : E — Yg
assign attributes to nodes and edges, where the attribute values are
denoted as Py and Zg respectively. In a directed multivariate graph,
E CV xV x X, where each edge is a tuple (u,v,f) representing a
directed edge from node u to node v with an optional label £ € X. In an
undirected multivariate graph, E C {{u,v} | u,v € V} x £, where each
edge connects an unordered node pair with label £ € X.

3.3 Motif Definitions

A motif refers to a small subgraph pattern that captures meaning-
ful structural configurations within graphs. Such patterns have been
extensively studied for their importance in understanding graph struc-
tures [67]. In this work, we introduce a quick configuration feature for
four commonly used motif types (i.e., path, loop, tree, and clique) to
help users easily construct their graph queries. We selected these four
motif types due to their frequent use in existing motif-based network
visualization research [10, 26,30, 58], aligning with our focus on visual
graph querying. The four motif types are described below:

» Path: A path P is defined as a sequence of vertices vi,va,..., Vg
(with k > 2) such that: (1) each consecutive pair of vertices v; and
viy1 connected by an edge (vi,vit1) € E fori=1,2,...;k—1;
(2) in undirected graphs, the edge may also be (v;i1,v;) € E);
and (3) all vertices are distinct, i.e., v; # v; for all i # j. In our
approach, users can specify a desired range for the number of
vertices in the path to support flexible query construction.

* Loop: A loop Lis a closed path in graph G, defined by a sequence
of vertices vi,vy,...,v; (with k > 3) such that: (1) vi = vy; (2)
all intermediate vertices are distinct, i.e., v; # v; for all i # j,
except i = 1, j = k; and (3) each consecutive pair is connected by
an edge (v;,viy1) € E fori=1,...,k— 1. In undirected graphs,
edges may also be (v;11,v;) € E. Users can specify a range for
the number of vertices in the loop.

* Tree: A tree T is a connected, acyclic subgraph with a designated
root node r, defined over a set of vertices v, vy, ..., v (with k > 2)
such that: (1) a unique simple path exists between any pair of
vertices u,v € Vr; and (2) the number of edges satisfies |E7| =
|Vr| — 1. In directed graphs (i.e., directed trees), all edges must
follow a consistent direction from parent to child (i.e., (v;,v;) €E

such that v; is the parent of v;). Users can specify a range for the
number of vertices in the tree, as well as the width and depth.

* Clique: A clique C is a complete subgraph defined over a set
of vertices vy, vy,. ..,V (wWith k > 2) such that: (1) for every pair
of distinct vertices u,v € V¢, an edge (u,v) € E exists; (2) in
undirected graphs, edges are symmetric, i.e., (u,v) € E or (v,u) €
E; (3) in directed graphs, both edges (u,v) € E and (v,u) € E
must exist for every pair. Users can specify a desired range for
the number of vertices in the clique.

4 |INFORMING THE DESIGN

This section presents our preliminary study and design requirements.

4.1 Preliminary Study

We conducted a preliminary study to comprehensively gather users’
requirements regarding the expressiveness of visual graph querying.
The details of the participants and procedures are as follows:

Participants: We invited four graph analysis experts (E1-E4) as
participants. All of them are researchers from universities, each with
over three years of experience in graph analysis across various domains,
where retrieving subgraphs from graph data is a routine task. E1 and
E2 possess expertise in querying using graph databases, while E3 and
E4 analyze graphs through programming and were unfamiliar with
graph query languages. Their feedback is also valuable because our
goal is to enable users to conduct graph querying interactively without
using complex query languages.

Procedures: The preliminary study was conducted in two sessions.
In the first session, we conducted open-ended interviews with each
participant. Initially, participants were asked to describe typical re-
quirements for querying patterns within graph data in their routine
research activities. We then introduced existing graph querying meth-
ods, including both query language-based and interactive visualization
approaches. Participants were encouraged to describe any current or po-
tential challenges in applying these methods to express and execute their
previously-described requirements. In response to these challenges,
we formulated initial design requirements and proposed an interactive
framework for editing and executing graph queries. In the second ses-
sion, participants were invited to evaluate these design requirements
and the proposed framework. Their feedback guided us in finalizing
the design requirements and refining the interactive framework.

The challenges (C1-C4) presented in Section 1 are summarized from
the challenges proposed by participants. The design requirements and
interactive framework are detailed in Section 4.2 and Section 5.

4.2 Design Requirements

We derived six design requirements (R1-R6) and grouped them into
three categories: Query Expression ( ), Query Verification

(), and Query Execution ( ).

* R1 Enable users to specify graph structure effi-
ciently. All experts (E1-E4) noted that constructing query graphs
with numerous nodes and edges is time-consuming and could be
simplified. As discussed in C1, user query intent may involve
motifs (e.g, loops and paths) with underspecified parameters (e.g.,
the number of nodes), so our approach should allow users to
specify such motifs efficiently. In addition, as manually creating
repetitive structures is tedious (C2), our approach should also
support expressing repetitive substructures quickly.

* R2 Support underspecified query intent. All ex-
perts (E1-E4) mentioned that a fixed query graph is insufficient
to specify graph patterns that they wish to query (C1). For in-
stance, in anomaly detection tasks, anomaly patterns often lack
precise and concrete structures, and are typically expressed as soft
structure constraints. The ideal query results are diverse and may
vary in aspects such as node count or topology. Our approach
should allow users to express such underspecified query intent,
e.g., specifying motifs by approximate node counts and defining
repetition ranges for particular structures.
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Fig. 2: The Envisage framework consists of four stages: (A) Query Expression, where users construct the basic structure of the query (1) and
specify rules (2); (B) Query Verification, which allows users to inspect applied rules (3) and preview query instantiations (4); (C) Progressive Query
Execution, where queries are progressively executed and refined based on intermediate results (5); and (D) Result Analysis, which presents the
query outcomes through a detailed result list (6) and an overview visualization (7).

* R3 Facilitate the expression and review of at-

tribute constraints. Attribute constraints are crucial in querying
multivariate graphs [37], and all experts (E1-E4) agreed on the
importance of specifying attribute constraints in queries. However,
existing methods require users to assign constraints individually
to nodes and edges, making batch specification difficult (C3).
Our approach should allow users to easily specify constraints
across multiple elements. Additionally, E3 suggested providing
an overview to facilitate constraint review and modification.

* R4 Provide detailed query instances for verifica-

tion. Three experts (E1-E3) expected that an effective approach
should allow them to instantiate detailed query graphs for verifi-
cation (C4). E1 emphasized that replacing specific query graphs
with underspecified query expressions might result in queries that
do not align with user expectations. Therefore, our approach
should instantiate user-defined expressions into concrete graphs
for an easy verification by users.

* RS Offer guidance for query modification. A

user-friendly visual query system should guide users in construct-
ing correct queries [6]. Unexpected query instances or empty
query results may be caused by issues in certain parts of a query
expression. E1 and E2 suggested that our approach should of-
fer a clear guidance to identify which parts deviate from their
expectations, facilitating easy modifications.

* R6 [Execulion} Execute user-defined queries and display the
results. All experts (E1-E4) emphasized that our approach should
promptly execute them and display the results (C4). E1 and E2
suggested transforming user-defined query expressions into graph
query language formats and executing them through a graph
database to support precise subgraph matching. Additionally, E4
noted that presenting query results within the context of the entire
graph data helps users better understand result distributions and
gain deeper insights for further query refinement.

5 Envisage

Informed by the above design requirements, we propose an interactive
visual graph querying framework (Fig. 2) that supports efficient ex-
pression, verification, and execution of graph queries, which comprises
four stages: Query Expression, Query Verification, Progressive Query

Execution, and Result Analysis. We implemented this framework in
a prototype system, Envisage! (Fig. 1), using JavaScript (Vue.js and
D3.js) and backed by a Neo4j graph database. This section outlines
each stage and the corresponding user interactions in Envisage.

5.1

The Query Expression stage (Fig. 2IN) enables users to express their
query intent through two phases: basic structure configuration and rule
specification. In addition to standard graph construction, it supports ef-
ficient expression of underspecified query intent via advanced functions
like customized motif configuration and parameterized rules.

Basic Structure Configuration: Initially, users can configure the
basic structure of a query graph through a set of interactions (as shown
in Fig. 2@)), including four types of entities: nodes, edges, motifs,
and customized entities. Motifs represent four common graph struc-
tures described in Section 3.3, allowing users to quickly build queries
with specific patterns. For clarity and consistency, all external edges
connected to motifs, except paths, are treated as connecting to a repre-
sentative node within the motif (e.g., the root of a tree). Paths, however,
expose both a head and a tail node for connection. A customized en-
tity comprises a group of nodes, edges, and motifs marked by users,
enabling batch operations such as setting attribute constraints.

Rule Specification: To support efficient query expression, we intro-
duce five types of parameterized rules that can be applied to entities
defined during the basic structure configuration stage. These rules en-
able users to specify structural or semantic constraints on nodes, edges,
motifs, and customized entities within the query graph. As illustrated
in Fig. 2@), users can interactively assign rules to relevant entities to
express specific query requirements. The definitions and functionalities
of the five rule types are described in detail below.

Query Expression

* Node Attribute Rules specify attribute constraints for nodes
within an entity, such as requiring a numerical attribute to exceed
a threshold. These rules apply to individual nodes as well as to
nodes within motifs or customized entities.

* Edge Attribute Rules specify attribute constraints for edges
within an entity, such as requiring edge weights to fall within a
certain range. These rules apply to individual edges as well as to
edges within motifs or customized entities.

1Video demo available at https://youtu.be/d1KR5McgWPA
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Fig. 3: The visual design of (A) the Rule List and (B) the Query Instantiation Visualization. The Rule List displays all user-defined entities along
the y-axis (A1), with their corresponding rules listed alongside each entity (A2). The Query Instantiation Visualization illustrates how the graph
query representation is instantiated into specific query instances based on both fully-specified rules (B1) and underspecified rules (B2). Users can
interactively explore each query instance (B3), and the corresponding query results can be displayed within this view (B4).

* Motif Configuration Rules define the structure of motifs using
parameters (e.g., number of nodes). To express the underspec-
ified intent, users can assign value ranges to these parameters.
Fig. 1FNd illustrates several subgraph instances that conform to a
clique motif configuration with a specified node range of 4 to 6.

Repeating Rules define how a substructure is repeated within
the query graph by specifying parameters such as the number of
repetitions and the entities to repeat. These rules are applicable
to all entity types. When applied to a customized entity, the rule
duplicates all included nodes, edges, and motifs and reconnects
duplicated components to the same external entities as the origi-
nal, thereby preserving the structural context. Similarly, repeating
rules for nodes and motifs duplicate them while preserving exter-
nal connections, whereas edge repetition duplicates only the edges
themselves without duplicating the connected nodes. Fig. 1E¥]
and showcase the use of repeating rules on a single node to
express a star structure and a connector pattern, respectively.

Chaining Rules define how a substructure is duplicated and
connected into a chain-like pattern, which applies to both nodes
and customized entities. Users can configure chaining rules by
selecting a customized entity or node and specifying parameters,
such as the start node, end node, number of chaining iterations,
and chaining mode. Chaining rules duplicate the selected entities
and connect the duplicated entities sequentially. The chaining
mode determines how each duplication is connected: either by
linking the start node of the new duplication to the end node of the
previous duplication (Fig. 1E¥), or by using the end node of each
duplication as the start node for the next iteration (Fig. 4L38).

Node Attribute Rules and Edge Attribute Rules are fundamental
features in some existing VGQ tools [44,55]. However, our approach
allows users to batch-apply these rules to customized entities and motifs
(R3). Motif Configuration Rules enable users to efficiently construct
query graphs with specific structures (R1) and express the underspeci-
fied intent regarding the size and shape of motifs (R2). Repeating Rules
and Chaining Rules facilitate the rapid specification of the query graphs
containing repetitive patterns (R1), and also allow users to express
underspecified intent by specifying a range for the parameters (R2).
To distinguish the users’ query expressions (i.e., basic structures with
parameterized rules) from concrete query instances, we refer to them
as graph query representations, as mentioned in Section 3.1.

Interactions with Envisage: Envisage provides a Query Expression
Panel (Fig. 1EN) that allows users to construct their graph query rep-
resentations. The panel consists of two main components: the Query
Editor (Fig. 1I¥0) and the Rule List (Fig. 1E¥3). In the Query Editor,
users can add nodes and motifs by clicking buttons and reposition them
via drag-and-drop. By clicking the “Connect Elements” button, users

can draw edges between two entities. To create customized entities,
users can select multiple entities by clicking on them and then finalize
the selection by clicking the “Save” button. For rule specification, users
can right-click on individual entities to open a pop-up menu, where rule
parameters can be configured. The Rule List displays all entities and the
corresponding rules applied to them, which will be described in detail
in Section 5.2. For entities that are difficult to select directly in the
Query Editor (e.g., customized entities), users can instead right-click
on their labels in the Rule List to access the same pop-up menu.

5.2 Query Verification

Query Verification (Fig. 28)) is designed to help users confirm whether
their query graph representations align with their expectations, which
consists of Rule Verification and Query Instantiation Verification.

Rule Verification: Before executing queries, users can check
whether the applied rules accurately reflect their query intent, and
then modify or remove any incorrect or unintended rules as needed
(Fig. 20)), using the Rule List (Fig. 3EN). To facilitate rule verification,
all entities are listed along the y-axis and grouped by type, while the
rules applied to each entity are displayed as colored blocks with text,
arranged horizontally to the right (Fig. 3E¥J). Different colors indicate
different rule types, making it easier for users to distinguish and review
them. By right-clicking a colored block, users can open a pop-up menu
to modify and remove the corresponding rules. To help users identify
which entities are connected by edges or included in customized en-
tities, we offset the label positions of edges and customized entities,
draw vertical lines linking them to their corresponding entities, and add
arrows to edges to indicate the direction from source to target. This
design is inspired by Massive Sequence View [56] and BioFabric [19],
which effectively encodes graph structural information in node-list lay-
outs. Additionally, users can hover over an entity to highlight it and its
related entities in both Query Editor and Rule List, establishing visual
connections between the two components.

Query Instantiation Verification: In line with R4, we generate
all valid query instances based on user-defined query representations
for verification. To help users understand how these instances are
derived and identify any misalignment with their query intent (RS),
we visually present the query instantiation process (Fig. 2@)) based
on user-defined rules, which includes two phases: fully-specified rule
instantiation and underspecified rule instantiation. Fully-specified
rules are those in which all parameters are fixed values, resulting in a
single query instance. In contrast, underspecified rules include at least
one parameter defined as a value range, capturing flexible user intent
and producing multiple possible query instances. The above definitions
only relate to three of the four rule types (i.e., motif configuration,
repeating, and chaining). Attribute rules do not affect instance variation
and are directly assigned to the relevant nodes and edges in query
instances. The details of both phases are discussed below:



¢ Fully-specified Rule Instantiation: We first construct a back-
bone based on users’ query representations, where entities with
repeating and chaining rules appear only once. Motifs other
than paths are abstracted as single nodes, while paths are repre-
sented by two nodes (a head node and a tail node) connected by
a path. This abstraction preserves the fundamental structure of
user-defined queries, making them easier to understand as a start-
ing point for instantiation. We begin by expanding the backbone
using each fully-specified rule, then apply all these rules collec-
tively, and finally visualize the resulting query instances for users.
This visualization helps users understand the final fully-specified
query instance while allowing them to inspect individual rules to
guide modifications (RS5).

¢ Underspecified Rule Instantiation: Each underspecified rule
can generate multiple possible query instances, and combining
several such rules can lead to a large number of combinations. To
manage this complexity, we start from the final fully-specified
query instance and incrementally generate all possible combina-
tions of underspecified rules and their corresponding instances.
This process follows a layered strategy: each layer represents
instances generated by applying a specific number of underspeci-
fied rules. For example, Layer 2 includes all instances formed by
applying any two underspecified rules to the fully specified base.
The final layer includes instances that satisfy all user-defined rules.
This layer-by-layer organization allows users to efficiently review
the query generation process (R4) and identify rule combinations
that cause unintended outcomes for further modification (RS).

During the query instantiation process, motifs are expanded into
specific nodes and edges, while entities with repeating or chaining
rules are duplicated according to the rule descriptions in Section 5.1.
The query instances consist solely of nodes and edges, with their node
attribute rules and edge attribute rules accordingly.

Interactions with Envisage: For rule verification, users can begin
by browsing all applied rules (colored blocks with text) associated with
each entity. By hovering over an entity of interest, users can highlight
the corresponding rules and related entities in both the Rule List and
the Query Editor, enhancing the clarity. When finding unintended rules,
users can right-click on the colored blocks and edit or remove them
in the pop-up menu (Fig. 1E¥3). For query instantiation verification,
Envisage provides a query instantiation visualization (Fig. 3[8) to illus-
trate the instantiation process. On the left, a node-link diagram shows
the backbone structure (Fig. 31tH0) linked to several circles, with each
circle representing a fully-specified rule. Clicking a circle shows the
corresponding query instance in another node-link diagram (Fig. 3[X}),
allowing users to verify whether each rule expands the backbone as
intended. These circles converge into a single circle representing the
final fully-specified query instance, which can also be clicked to review
and confirm whether all fully-specified rules are correctly applied. This
final instance is further linked to a Sankey diagram-based design to dis-
play the underspecified rule instantiation (Fig. 3E¥). The x-axis layer
index indicates the number of underspecified rules selected in each
combination. For example, Layer 1 includes individual rules, Layer 3
includes all combinations of three rules from the full rule set, and the
final layer represents the full combination of all rules. Each rectangle
within a layer represents a rule combination, with its height indicating
the number of query instances generated by that combination. The flows
between adjacent layers indicate that each combination in the next layer
includes multiple combinations from the previous layer. For example,
the combination [0,1,2] in Layer 3 contains the subsets [0,1], [0,2], and
[1,2]. By clicking these rectangles, users can review and compare the
query instances generated by different rule combinations to identify
which underspecified rules produce unintended results (Fig. 31%)). Ad-
ditionally, rule descriptions and the number of instances are displayed
in text alongside corresponding visual elements for clarity.

5.3 Progressive Query Execution

The generated query instances exist as graph structures with attribute
constraints, rather than in graph query language statements that are

directly executable by the graph database. To support execution, we
introduce a query translator that converts these instances into graph
query language statements. However, executing all final query instances
at once can be time-consuming. If the results are unavailable or unex-
pected, users must iteratively modify the queries and re-execute them,
making it difficult to diagnose issues and guide modifications (RS).
To ensure smooth execution of user-defined query instances (R6), we
introduce a progressive execution process (Fig. 2{&)). The query instan-
tiation visualization contains multiple intermediate steps: the backbone,
individual fully-specified rules, the final specific instance, and all layers
of underspecified rule combinations. Each step builds on the results of
the previous one, forming a structured and traceable execution flow. By
executing queries progressively, users can easily identify which rules
cause failures. If a step returns no results, all subsequent instances
depending on it are also guaranteed to fail (Fig. 26&)). To speed up
this process, users can initially limit the number of returned results
and execute the steps incrementally, allowing them to quickly identify
and adjust problematic rules. Once the queries are refined, users can
execute the final queries to retrieve the complete set of results.

Interactions with Envisage: The progressive query execution work-
flow is integrated into the Query Execution Panel via query buttons
(Fig. 103). Each intermediate step has a query button placed below it,
enabling users to execute queries and view the results. When users
click the query button for an individual query instance (represented by
circles), Envisage translates it into query language through the query
translator and executes it in Neo4j database [40]. The result is visually
encoded: a green circle indicates a successful match, while a red circle
indicates no results (Fig. 330). The number of results is displayed
alongside the circle as text. In the Sankey diagram-based design, each
rectangle represents a combination of multiple underspecified rules
and may include several query instances, each with its own result set.
Since the height of the rectangle reflects the number of query instances,
we subdivide it into smaller vertically-arranged rectangles, each rep-
resenting a single query instance. To enhance interpretability, we
use a gradient purple color to visually encode the number of results
for each query instance. The instances with no results are shown in
red (Fig. 3B%). Users can selectively execute query instances at any
intermediate step with a limited number of returned results, enabling
them to quickly assess whether queries are functioning as intended and
iteratively refine rules to ensure meaningful results.

5.4 Result Analysis

In progressive query execution, users can determine whether query
instances produce results but still require an in-depth analysis of each
instance’s results (R6). The Result Analysis stage (Fig. 2/1)) aims to
present results through both an overview and a detailed examination.
In the result overview (Fig. 2@h), we first compute the frequency of all
nodes and edges based on the results that users wish to analyze. These
frequencies are then visualized and highlighted within the context of
the entire graph data. This overview enables users to identify result
distributions across the entire graph and detect potential issues, such as
an excessive concentration of results within a single subgraph. Addi-
tionally, users can examine individual query results in detail, including
the graph structure and its associated properties (Fig. 2().

Interactions with Envisage: Envisage provides a Result Overview
(Fig. 1[®) and a Result List (Fig. 1)) that display the corresponding
query results when users click on circles or rectangles representing
query instances that have returned results. Specifically, the Result
Overview presents the entire graph as a node-link diagram, with result
frequencies highlighted using a gradient red color scheme. The Result
List displays information cards, each representing the results of a single
query instance. Each card includes statistics (e.g., node count), a node-
link diagram showing one result, and a sidebar for switching between
results of that instance. Only one result is shown at a time, as all results
for a given instance share the same graph structure but differ in labels.
Users can browse these labels via the sidebar (Fig. 1[0)) and navigate
between different instances using a scroll bar.
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Fig. 4: Money laundering pattern detection using Envisage. (A) The user defined a dispersion—convergence—dispersion pattern by applying multiple
rules (A1), executed the query progressively (A2—A3), and successfully retrieved matching results (A4). (B) She constructed a chain-shaped pattern
using chaining and repeating rules (B1) and used progressive execution (B2—B4) to identify over-repetition issues as shown in the results (B5-B6).

6 CASE STuDY

This section presents two case studies demonstrating the effectiveness
of Envisage. To evaluate Envisage, we conducted user interviews with
14 graph analysts (U1-U14), which will be discussed in Section 7. The
cases in this section illustrate how U1 and U9 utilized Envisage for
specific querying tasks. To assess the generalizability of Envisage, we
incorporated three graph datasets of varying scales and from different
domains for user selection to conduct the graph querying. The details
of these datasets are described as follows:

* Les Misérables Co-occurrence Network (LMCN): This dataset
involves co-occurrence relationships between characters in Victor
Hugo’s novel Les Misérables [60]. It is a classical undirected
graph dataset for graph analysis [32], consisting of 77 nodes and
254 edges. Each node corresponds to a character, and an edge
connects two characters if they appear in the same chapter.

Function Call Graph (FCG): We select four samples from
the public function call dataset, Malicious Webshell Family
(MWF) [66], to construct this dataset, which comprises 305 nodes
and 4,516 edges. Nodes represent functions, while edges de-
note function calls with multiple attributes, including the caller
function, callee function, parameters, and return values.

* Money Laundering Network (MLN): This dataset captures
an Ethereum-based money laundering event, named eazyfi-
hacker [48], selected from the public Ethereum Money Laun-
dering dataset, EthereumHeist [61]. It contains 1,335 nodes and
8,960 edges, where nodes represent blockchain accounts and
edges denote transactions between them.

6.1 Case 1: In-depth Analysis of Money Laundering Pat-
terns

Ul expressed a particular interest in the money laundering dataset
(MLN) and aimed to leverage Envisage to identify characteristic pat-
terns associated with money laundering activities.
Layering-Integration-Layering: As a first step, Ul sought to
investigate the presence of Layering—Integration—Layering patterns
within the network, which means that illicit funds are initially dispersed
across multiple accounts (layering), consolidated into a single account
(integration), and then dispersed again (layering). To analyze this pat-
tern, she constructed a query representation, as illustrated in Fig. 4fN.
Specifically, she applied a node attribute rule “label=heist” (heist label
marks the source node in MLN dataset) to the initial node (Node 0)
to mark it as the suspected origin of the money laundering flow. She
then added two additional nodes (Node I and Node 2), connecting
them sequentially to model the initial money flow. To express the
Layering—Integration structure, she applied a repeating rule to Node 1,
allowing it to repeat 1-2 times. To capture subsequent layering, she
appended a directed path (PO) consisting of three nodes and added
Node 3 to represent the further flow of laundered funds. A repeating
rule was then applied to Node 3 to express the final layering process.

She then grouped all entities into a customized entity (C0) and ap-
plied an edge attribute rule, “value>0", to ensure only transactions
with positive monetary value were considered. After constructing the
query, Ul reviewed the defined rules (Fig. 4fNl) and the generated
query instances (Fig. 4F%)) to verify that the structure aligned with her
intended pattern. She then executed intermediate steps and the final
query instances by interacting with the query interface (Fig. 4E¥]). The
appearance of green circles and purple blocks indicated that each step
returned results successfully. Finally, in the Result List (Fig. 4E¥), she
confirmed that the dataset did indeed contain instances matching the
Layering—Integration—Layering pattern of money laundering behavior.

Chain-shaped Money Laundering: U1 then turned her attention to
investigating a chain-shaped money laundering pattern and constructed
a corresponding query representation, as shown in Fig. 40. Similar
to the previous pattern, she designated Node 0 as the source node and
added a directed path (P0) to represent the primary flow of illicit funds.
To simulate branching behavior within the laundering process, she
added three additional nodes (Node 1, Node 2, and Node 3), thereby
creating two diverging branches from the main path. She grouped
these nodes into a customized entity (C0) and applied a chaining rule,
specifying Node 1 as the start node and Node 2 as the end node, to
expand the query in a chain-like structure, as illustrated in Fig. 4030.
Then, she applied an attribute rule, “value>100", to the edge from
Node 0 to Node 1, marking it as the main branch to differentiate it from
auxiliary paths. Additionally, U1 hypothesized that multiple source
nodes might initiate transactions along this chain-shaped pattern, and
she applied a repeating rule to the source node (Node 0). After execut-
ing the final query instances, she observed that half of them returned
results (Fig. 403), while the other half returned no results, indicated
by red rectangles in Fig. 40. To diagnose the issue, U1 progressively
executed the intermediate steps (Fig. 48] and [:¥}) and discovered that
the red rectangles appeared specifically in the instances generated by
the repeating rule applied to the source node. This indicated that while
patterns where the heist node repeated O or 1 times produced valid
results, those involving 2-3 repetitions did not yield any matches.

Using Envisage, U1 successfully expressed and verified her desired
money laundering patterns within the dataset.

6.2 Case 2: Rapid Character Relationship Querying

U9 has read the novel Les Misérables and wanted to explore the re-
lationships between its main characters by querying the character co-
occurrence network (LMCN).

Efficient Query Construction: U9 aimed to explore the rela-
tionships between the protagonist, Valjean, and various communities
(e.g., families or friend groups) by constructing a query, as shown in
Fig. SEN. He began by adding Node 0 and applying a node attribute rule,
“name=Valjean”. He then connected this node to a 5-node clique motif
(C0), assuming five members as a reasonable size for a community. To
express multiple communities, U9 intended to repeat the clique motif
but was unsure how many such groups that Valjean would be associ-
ated with, so he configured CO to repeat 0-3 times. After reviewing
the instantiation visualization (Fig. SENE), U9 confirmed that Envisage
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correctly generated the query instances involving one to four communi-
ties connected to Valjean. Upon executing these instances through the
Query Execution Panel, U9 observed that all query instances returned
results (the green circles and purple blocks), indicating that Valjean
co-occurred with at least four distinct communities, each consisting
of five or more characters. The characters in these communities are
highlighted in the Result Overview, as shown in Fig. 5[@).

Insightful Result Comparison: U9 considered that character co-
occurrences happening only once might be incidental, potentially lead-
ing to the inaccurate identification of communities. To address this
concern, he applied an edge attribute rule, “value>1”, to the clique
motif (C0), thereby constraining all edges within CO to reflect stronger
and more meaningful co-occurrence relationships of communities. Af-
ter re-executing the query instances with this constraint, U9 observed
that the results differed from those generated without the edge value
rule (Fig. SEFD), highlighting how edge strength influences community
detection. Specifically, query instances where Valjean was connected
to one to three communities still returned valid results, whereas the
instance involving four communities yielded no results, as indicated by
the red rectangles in Fig. 5I0. The rectangle representing Valjean with
three communities was colored light purple, suggesting a low number
of matching results. Upon examining the Result Overview (Fig. S[81§)
and the Result List (Fig. 5[##3), U9 found that although three commu-
nities were returned, they belonged to only two distinct communities,
as shown by the two circled clusters in Fig.5[®. By hovering over the
nodes to view their names, U9 discovered that the cluster in the upper
circle primarily consisted of members of “The Friends of the ABC”, a
revolutionary group that once fought alongside Valjean. The cluster
in the lower circle included key characters involved in a subplot of an
innocent man being mistaken for Valjean.

With Envisage, U9 quickly expressed and executed desired queries
to explore Valjean’s community relationships and intuitively uncover
key insights, including two main plotlines in the novel.

7 USER INTERVIEW

To evaluate the effectiveness of Envisage, we conducted in-depth user
interviews with 14 graph analysts. This section presents the participants,
procedures, and key findings.

7.1 Participants and Apparatus

We recruited 14 participants (U1-U14) from universities for user inter-
views (6 females, 8 males, ageean = 24, agegg = 2.95, with normal

vision and no color vision deficiency). All participants were majoring
in fields related to computer science and had at least six months of
experience in graph analysis. They comprised ten graduate students
(U1-U3, U5-U8, and U12-U14), three undergraduates (U9-U11), and
one postdoctoral researcher (U4). All participants had prior experience
writing code to extract information from graph data. However, only
five participants (U5, U9-U12) were familiar with data querying lan-
guages or tools: U9 with Cypher, U10 and U11 with SQL, and U5
and U12 with NetworkX [41] and Cytoscape [14]. All interviews were
conducted online via Zoom. Envisage was deployed on a remote server,
and participants accessed it using their own laptops or desktops while
sharing their screens with the interviewer. Each interview lasted about
one hour, and we paid $15 to each participant for compensation.

7.2 Procedures

The user interviews consisted of tutorial, task, and interview phases. In
the tutorial phase, participants were first asked to access the online En-
visage system, and we then introduced its background, workflow, visual
design, and interactions. A usage scenario illustrated how Envisage
supports graph querying in practice. We grouped participants into three
groups based on their expertise and preferences, each working with
a different dataset described in Section 6. In the task phase, we first
introduced the assigned datasets and then guided participants through
a series of instructions to perform graph querying. These instructions
were designed to ensure that participants understood and used the core
functions of Envisage. Afterward, participants were allowed to freely
query specific patterns of their interest following our four-stage frame-
work until they gained a comprehensive understanding of how Envisage
works. The entire task phase typically lasted about 30 minutes. Finally,
participants completed a post-study questionnaire, which included 14
questions (Q1-Q14), as shown in Fig. 6. Q1-Q12 were closed-ended,
rated via a 7-point Likert scale [29] (1 for strongly disagree and 7 for
strongly agree), and assessed Envisage support for query expression
(Q1-Q4), verification (Q5, Q6), execution (Q7, Q8), and usability (Q9-
Q12). The usability questions (Q9-Q12) were selected from System
Usability Scale (SUS) Questionnaire [9].

7.3 Results

Fig. 6 shows participants’ feedback for closed-ended questions (Q1-
Q12), including the score distribution along with the calculated mean
(M) and standard deviation (SD) for each question. The questionnaire
results indicate overall positive user feedback for Envisage across key
dimensions, while there was some negative feedback, which will be
discussed in the detailed result analysis below.

Expression: Participants responded positively to Envisage’s ability
to support expressive and flexible graph query construction. They
agreed it helped specify queries efficiently (Q1: M = 5.50) and express
underspecified intent (Q2: M = 6.07), with high ratings for configuring
attribute constraints (Q3: M = 6.14) and overall intent expression
(Q4: M = 6.00). However, some participants gave neutral responses,
particularly to Q1 and Q4, primarily due to limitations in representing
certain complex structures. For instance, U6 attempted to express
two cliques connected by multiple edges across different nodes, but
Envisage treated inter-clique connections as linking to the same nodes.
This simplification was necessary to prevent exponential growth in
the number of generated query graphs as the node count increased.
Similarly, U8 wanted to construct more complex or irregular query
structures beyond the current support for repeating and chaining rules.
Moving forward, these limitations could be addressed by enabling
users to fine-tune generated instances or by translating query intent
into graph matching programs rather than relying solely on enumerated
query graphs and query languages.

Verification & Execution: Envisage was highly rated for its sup-
port for verification, with users valuing the correctness of generated
query instances (Q5: M = 6.36, SD = 0.63) and the clarity of query
instantiation visualizations (Q6: M = 6.43, SD = 0.51). For execu-
tion, users appreciated the progressive execution feature, which helped
guide query modifications (Q7: M = 6.00, SD = 1.18) and overall
support for execution (Q8: M = 5.57, SD = 1.40). Some users gave
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Fig. 6: The user interview questionnaire results. Q1-Q12 are closed-ended questions rated on a 7-point Likert scale. Q13, Q14 are open-ended
questions to collect participants’ feedback. The detailed scores of Q1-Q12 are shown in a stacked bar chart.

neutral or negative feedback on Q7 and Q8 due to slower response times
when processing a large number of complex query instances, which
impacted interaction smoothness. To align with underspecified query
intent, the system generates many possible query instances, placing
heavy demands on computational resources, particularly memory. This
issue could be alleviated by deploying the system on more powerful
servers or incorporating techniques such as graph neural networks [20]
to accelerate querying rather than relying solely on database queries.

Usability: Overall, participants found Envisage easy to learn (Q9:
M =5.93) and use (Q10: M = 5.64), with well-integrated features (Q11:
M =5.93). However, some neutral and negative feedback revealed areas
for improvement. U7 noted the need for more detailed guidance, results
statistics, and visual indicators during query processing, while U2 noted
that repetitive basic interactions like adding nodes and edges can be
simplified. The slightly lower score for intended frequent use (Q12: M
= 5.14) was attributed to difficulties integrating Envisage into existing
workflows, which often involve additional steps such as deriving new
attributes or converting outputs into domain-specific formats.

Open-ended Questions: In Q13, participants compared Envisage
with other graph query methods. Those unfamiliar with such tools
shared impressions based on a brief introduction of existing systems
during user interviews. Overall, participants found Envisage more ex-
pressive than traditional visual query tools, with features like query
expansion rules helping them quickly express desired patterns. Par-
ticipants familiar with graph query languages (U9 and U12) noted
that these languages still offer greater expressive power, particularly
for advanced operations such as subqueries, unions, and intersections.
However, most participants noted that writing such queries remains
time-consuming and laborious, even for experienced users. As a result,
Envisage is well-suited for querying complex graphs involving specific
(e.g., motifs) and regular patterns (e.g., repeating structures), especially
for novice users. In response to Q14, U2 and U7 suggested incorporat-
ing a feature that allows users to describe their query intent in natural
language. U2 further noted that while some recent studies have used
large language models (LLMs) to generate Cypher queries [24], these
approaches remain limited in terms of query complexity, generation
accuracy, and intuitive visual design. Therefore, combining LLMs with
visual graph querying could be a promising direction for future explo-
ration. U12 also suggested making motif configuration more flexible,
such as allowing customization of individual elements within a motif
and enabling users to fine-tune query instances after instantiation.

8 DiscussION

This section discusses key lessons learned about the expressiveness of
visual graph querying and outlines our limitations.

8.1 Expressiveness of Visual Graph Querying

A primary goal of visual graph querying is to enable users to interac-
tively construct graph queries that reflect their intent without relying
on complex code or formal query languages [6]. However, user intent
is often diverse and loosely defined. Existing approaches, such as
“query-by-template”, offer limited support for expressing more complex
or underspecified queries. This work investigates how visual graph
querying can support flexible query expression. Specifically, users

can apply multiple rules to customized entities to construct complex
query graphs aligned with their goals. Our prototype incorporates four
common motifs and two additional parameterized rules (repeating and
chaining) to assess the feasibility of this approach. Future extensions
could support more customized motifs and rule types for broader ex-
pressiveness. User interviews revealed that Envisage could express the
most user-desired patterns, though minor gaps remained. One potential
solution is to allow users to sketch rough patterns with current func-
tions and fine-tune them as needed. Additionally, while prior work has
used large language models (LLMs) for graph query generation [24],
these approaches struggle with complex patterns and are challenging to
revise for users unfamiliar with query languages. Combining the intent-
capturing ability of LLMs with the visual expressiveness of systems
like Envisage presents a promising direction for more accessible and
flexible graph querying.

8.2 Limitations

Envisage is not without limitations: First, user queries are represented
as subgraphs with attribute constraints, which can be translated into
various query languages by extending the translators. However, both
translation and execution performance may vary across languages. For
example, Cypher queries can become verbose and slow when express-
ing large patterns, potentially impacting execution speed. Some lan-
guages like Gremlin [49] offer more efficient traversal constructs, but
this comes at the cost of increased translator complexity. Second, En-
visage can benefit from integrating existing techniques such as query
auto-completion [64] and auto-suggestion [27]. Third, the Result List
can become difficult to navigate when a large number of results are
returned, which could be mitigated by incorporating a dropdown menu
or pagination. Additionally, Envisage could incorporate additional in-
teractions to support the expression of temporal patterns. For example,
in MLN dataset, edges represent timestamped transactions, and one
participant aimed to specify temporal relationships between edges.

9 CONCLUSION

We presented Envisage, an interactive visual graph querying system
designed to improve expressive power in query construction. Envisage
adopts a four-stage framework that guides users through the processes
of expressing, verifying, and executing graph queries. To evaluate it,
we conducted two case studies and in-depth interviews with 14 graph
analysts. The results show that Envisage effectively supports users
in building, refining, and executing complex queries with improved
scalability and flexibility in handling underspecified query intent.

In future work, we plan to allow users to customize rules when
expressing graph queries, enhancing Envisage’s adaptability across
domains. We also aim to integrate natural language with visual inter-
action, allowing users to express query intent in natural language and
refine generated query instances through an interactive visual interface.

ACKNOWLEDGMENTS

This project is supported by the Ministry of Education, Singapore, under
its Academic Research Fund Tier 2 (Proposal ID: T2EP20222-0049),
and NTU Start Up Grant awarded to Yong Wang.



REFERENCES

(1]

(2]

(3]

[4

=

(3]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

C. R. Aberger, S. Tu, K. Olukotun, and C. Ré. Emptyheaded: A rela-
tional engine for graph processing. In Proceedings of the International
Conference on Management of Data, pp. 431-446. ACM, 2016. doi: 10.
1145/2882903.2915213 2

Amazon Web Services, Inc. Amazon neptune: Fully managed graph
database service. https://aws.amazon.com/neptune/. [Online; ac-
cessed 24-March-2025]. 3

K. Ammar, F. McSherry, S. Salihoglu, and M. Joglekar. Distributed
evaluation of subgraph queries using Worst-Case optimal low-memory
dataflows. arXiv preprint, Feb. 2018. doi: 10.48550/arXiv.1802.03760 2
ArangoDB GmbH. Arangodb: Multi-model database for your modern
apps. https://arangodb.com/. [Online; accessed 24-March-2025]. 3
S. S. Bhowmick and B. Choi. Data-driven visual query interfaces for
graphs: Past, present, and (near) future. In Proceedings of the International
Conference on Management of Data, pp. 2441-2447. ACM, Philadelphia,
PA, USA, June 2022. doi: 10.1145/3514221.3522562 2

S. S. Bhowmick, B. Choi, and C. Li. Graph querying meets hci: State of the
art and future directions. In Proceedings of the International Conference
on Management of Data, pp. 1731-1736. ACM, Chicago, May 2017. doi:
10.1145/3035918.3054774 1,2, 4,9

S. S. Bhowmick, B. Choi, and S. Zhou. VOGUE: Towards a visual
interaction-aware graph query processing framework. In Proceedings of
the Conference on Innovative Data Systems Research, 2013. 1, 2

S. S. Bhowmick, H. E. Chua, B. Thian, and B. Choi. ViSual: An hci-
inspired simulator for blending visual subgraph query construction and
processing. In Proceedings of the 31st International Conference on Data
Engineering, pp. 1480-1483. IEEE, Seoul, Apr. 2015. doi: 10.1109/ICDE.
2015.7113406 2

J. Brooke. SUS: A retrospective. Journal of usability studies, 8(2):29-40,
2013. doi: doi/abs/10.5555/2817912.2817913 8

E. Cakmak, J. Fuchs, D. Jickle, T. Schreck, U. Brandes, and D. Keim.
Motif-based visual analysis of dynamic networks. In Proceedings of
the Visualization in Data Science, pp. 17-26. IEEE, Oct. 2022. doi: 10.
1109/VDS57266.2022.00007 3

D. H. Chau, C. Faloutsos, H. Tong, J. I. Hong, B. Gallagher, and T. Eliassi-
Rad. Graphite: A visual query system for large graphs. In Proceedings of
the International Conference on Data Mining Workshops, pp. 963-966.
IEEE, 2008. doi: 10.1109/ICDMW.2008.99 1, 2

L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomor-
phism algorithm for matching large graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(10):1367-1372, Oct. 2004. doi: 10.
1109/TPAMI.2004.75 2

E. Cuenca, A. Sallaberry, D. Ienco, and P. Poncelet. Vertigo: A visual
platform for querying and exploring large multilayer networks. [EEE
Transactions on Visualization and Computer Graphics, 28(3):1634—-1647,
2021. doi: 10.1109/TVCG.2021.3067820 1,2

Cytoscape Consortium. Cytoscape: An open source platform for complex
network analysis and visualization. https://cytoscape.org/, 2024.
[Online; accessed: 28-March-2025]. 8

C. Dunne and B. Shneiderman. Motif simplification: Improving network
visualization readability with fan, connector, and clique glyphs. In Pro-
ceedings of the CHI Conference on Human Factors in Computing Systems,
pp. 3247-3256. ACM, Paris, France, Apr. 2013. doi: 10.1145/2470654.
2466444 2

S. Egi. Loop patterns: Extension of kleene star operator for more expres-
sive pattern matching against arbitrary data structures. arXiv preprint,
Sept. 2018. doi: 10.48550/arXiv.1809.03252 2

N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault,
S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor. Cypher: An evolving
query language for property graphs. In Proceedings of the 2018 Interna-
tional Conference on Management of Data, pp. 1433-1445. ACM, 2018.
doi: 10.1145/3183713.3190657 1, 3

L. Freeman et al. The development of social network analysis. A Study in
the Sociology of Science, 1(687):159-167, 2004. 1

J. Fuchs, F. L. Dennig, M. Heinle, D. A. Keim, and S. Di Bartolomeo.
Exploring the design space of biofabric visualization for multivariate
network analysis. Computer Graphics Forum, 43(3):¢15079, June 2024.
doi: 10.1111/cgf. 15079 5

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning
on large graphs. Advances in neural information processing systems,
30:1025-1035, 2017. doi: 10.5555/3294771.3294869 2, 9

[21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

(35]

[36]

[37]

[38]

(39]

M. Han, H. Kim, G. Gu, K. Park, and W. Han. Efficient subgraph match-
ing: Harmonizing dynamic programming, adaptive matching order, and
failing set together. In Proceedings of the International Conference on
Management of Data, pp. 1429—-1440. ACM, Amsterdam, July 2019. doi:
10.1145/3299869.3319880 2

W. Han, J. Lee, and J. Lee. TurboISO: Towards ultrafast and robust
subgraph isomorphism search in large graph databases. In Proceedings
of the International Conference on Management of Data, pp. 337-348.
ACM, New York, June 2013. doi: 10.1145/2463676.2465300 2

H. He and A. K. Singh. Graphs-at-a-time: Query language and access
methods for graph databases. In Proceedings of the International Confer-
ence on Management of Data, pp. 405-418. ACM, Vancouver, June 2008.
doi: 10.1145/1376616.1376660 1, 2

M. Hornsteiner, M. Kreussel, C. Steindl, F. Ebner, P. Empl, and S. Schonig.
Real-time text-to-cypher query generation with large language models
for graph databases. Future Internet, 16(12):438, Dec. 2024. doi: 10.
3390/1116120438 9

K. Huang, H. Liang, C. Yao, X. Zhao, Y. Cui, Y. Tian, R. Zhang, and
X. Zhou. Visualneo: Bridging the gap between visual query interfaces and
graph query engines. Proceedings of the VLDB Endowment, 16(12):4010-
4013, Sept. 2023. doi: 10.14778/3611540.3611608 2

W. Huang, C. Murray, X. Shen, L. Song, Y. X. Wu, and L. Zheng. Vi-
sualisation and analysis of network motifs. In Proceedings of the Ninth
International Conference on Information Visualisation, pp. 697-702, 2005.
doi: 10.1109/1V.2005.138 3

N. Jayaram, S. Goyal, and C. Li. VIIQ: Auto-suggestion enabled visual
interface for interactive graph query formulation. Proceedings of the
VLDB Endowment, 8(12):1940-1943, Aug. 2015. doi: 10.14778/2824032.
2824106 9

C. Jin, S. S. Bhowmick, B. Choi, and S. Zhou. Prague: Towards blending
practical visual subgraph query formulation and query processing. In
Proceedings of the 28th International Conference on Data Engineering,
pp. 222-233. IEEE, Washington, Apr. 2012. doi: 10.1109/ICDE.2012.49
2

A. Joshi, S. Kale, S. Chandel, and D. K. Pal. Likert scale: Explored and
explained. British Journal of Applied Science & Technology, 7(4):396-403,
2015. doi: 10.9734/BJAST/2015/14975 8

S. Jung, D. Shin, H. Jeon, K. Choe, and J. Seo. MoNetExplorer: A visual
analytics system for analyzing dynamic networks with temporal network
motifs. [EEE Transactions on Visualization and Computer Graphics,
30(10):6725-6739, Oct. 2024. doi: 10.1109/TVCG.2023.3337396 3

A. Juttner and P. Madarasi. VF2++: An improved subgraph isomorphism
algorithm. Discrete Applied Mathematics, 242:69-81, June 2018. Com-
putational Advances in Combinatorial Optimization. doi: 10.1016/j.dam.
2018.02.018 2

D. E. Knuth. The stanford graphbase: A platform for combinatorial
algorithms. In Proceedings of the 4th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 41-43. ACM/SIAM, Austin, Jan. 1993. doi:
rec/conf/soda/Knuth93 7

L. Lai, Z. Qing, Z. Yang, X. Jin, Z. Lai, R. Wang, K. Hao, X. Lin, L. Qin,
W. Zhang, Y. Zhang, Z. Qian, and J. Zhou. Distributed subgraph matching
on timely dataflow. Proceedings of the VLDB Endowment, 12(10):1099—
1112, 2019. doi: 10.14778/3339490.3339494 2

C.Li, Y. Tang, Z. Tang, J. Cao, and Y. Zhang. Motif-based embedding label
propagation algorithm for community detection. International Journal of
Intelligent Systems, 37(3):1880-1902, 2022. doi: 10.1002/int.22759 1
G. Li, H. Mi, C. H. Liu, T. Itoh, and G. Wang. HiRegEx: Interactive visual
query and exploration of multivariate hierarchical data. I[EEE Transactions
on Visualization and Computer Graphics, 2024. doi: 10.1109/TVCG.2024
.3456389 2

D. Lin, J. Wu, Y. Yu, Q. Fu, Z. Zheng, and C. Yang. Denseflow: Spotting
cryptocurrency money laundering in ethereum transaction graphs. In
Proceedings of the ACM on Web Conference 2024, pp. 44294438, 2024.
doi: 10.1145/3589334.3645692 1

J. Ma, S. S. Bhowmick, L. Tay, and B. Choi. SIERRA: A counterfactual
thinking-based visual interface for property graph query construction.
In Companion of the 2024 International Conference on Management of
Data, pp. 440-443. ACM, New York, June 2024. doi: 10.1145/3626246.
3654729 2,4

A. Mhedhbi and S. Salihoglu. Optimizing subgraph queries by combining
binary and worst-case optimal joins. Proceedings of the VLDB Endowment,
12(11):1692-1704, 2019. doi: 10.14778/3342263.3342643 2

J. J. Miller. Graph database applications and concepts with neo4j. In Pro-


https://doi.org/10.1145/2882903.2915213
https://doi.org/10.1145/2882903.2915213
https://aws.amazon.com/neptune/
https://doi.org/10.48550/arXiv.1802.03760
https://arangodb.com/
https://doi.org/10.1145/3514221.3522562
https://doi.org/10.1145/3035918.3054774
https://doi.org/10.1145/3035918.3054774
https://doi.org/10.1109/ICDE.2015.7113406
https://doi.org/10.1109/ICDE.2015.7113406
https://dl.acm.org/doi/abs/10.5555/2817912.2817913
https://doi.org/10.1109/VDS57266.2022.00007
https://doi.org/10.1109/VDS57266.2022.00007
https://doi.org/10.1109/ICDMW.2008.99
https://doi.org/10.1109/TPAMI.2004.75
https://doi.org/10.1109/TPAMI.2004.75
https://doi.org/10.1109/TVCG.2021.3067820
https://cytoscape.org/
https://doi.org/10.1145/2470654.2466444
https://doi.org/10.1145/2470654.2466444
https://doi.org/10.48550/arXiv.1809.03252
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1111/cgf.15079
https://doi.org/10.5555/3294771.3294869
https://doi.org/10.1145/3299869.3319880
https://doi.org/10.1145/3299869.3319880
https://doi.org/10.1145/2463676.2465300
https://doi.org/10.1145/1376616.1376660
https://doi.org/10.3390/fi16120438
https://doi.org/10.3390/fi16120438
https://doi.org/10.14778/3611540.3611608
https://doi.org/10.1109/IV.2005.138
https://doi.org/10.14778/2824032.2824106
https://doi.org/10.14778/2824032.2824106
https://doi.org/10.1109/ICDE.2012.49
https://doi.org/10.9734/BJAST/2015/14975
https://doi.org/10.1109/TVCG.2023.3337396
https://doi.org/10.1016/j.dam.2018.02.018
https://doi.org/10.1016/j.dam.2018.02.018
https://dblp.org/rec/conf/soda/Knuth93
https://dblp.org/rec/conf/soda/Knuth93
https://doi.org/10.14778/3339490.3339494
https://doi.org/10.1002/int.22759
https://doi.org/10.1109/TVCG.2024.3456389
https://doi.org/10.1109/TVCG.2024.3456389
https://doi.org/10.1145/3589334.3645692
https://doi.org/10.1145/3626246.3654729
https://doi.org/10.1145/3626246.3654729
https://doi.org/10.14778/3342263.3342643

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55

[56]

[57

[58]

[59]

ceedings of the Southern Association for Information Systems Conference,
pp. 141-147. Atlanta, 2013. 1

Neo4j, Inc. Neo4j graph database & analytics. https://neo4j.com/.
[Online; accessed 24-March-2025]. 2, 3, 6

NetworkX Developers. NetworkX: Network analysis in python. https:
//networkx.org/, 2024. [Online; accessed: 28-March-2025]. 8

J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of sparql.
ACM Transactions on Database Systems, 34(3):16:1-16:45, 2009. doi: 10.
1145/1567274.1567278 3

R. Pienta, F. Hohman, A. Endert, A. Tamersoy, K. Roundy, C. Gates,
S. Navathe, and D. H. Chau. Vigor: Interactive visual exploration of
graph query results. [EEE Transactions on Visualization and Computer
Graphics, 24(1):215-225, 2017. doi: 10.1109/TVCG.2017.2744898 1,2
R. Pienta, A. Tamersoy, A. Endert, S. Navathe, H. Tong, and D. H. Chau.
Visage: Interactive visual graph querying. In Proceedings of the Interna-
tional Working Conference on Advanced Visual Interfaces, pp. 272-279,
2016. doi: 10.1145/2909132.2909246 1, 2, 5

A. Pister, C. Prieur, and J.-D. Fekete. Visual queries on bipartite multivari-
ate dynamic social networks. In Proceedings of the 24th Eurographics
Conference on Visualization, 2022. doi: 10.2312/evp.20221115 2

X. Ren and J. Wang. Exploiting vertex relationships in speeding up
subgraph isomorphism over large graphs. Proceedings of the VLDB
Endowment, 8(5):617-628, Jan. 2015. doi: 10.14778/2735479.2735493 2
C. R. Rivero and H. M. Jamil. Efficient and scalable labeled subgraph
matching using sgmatch. Knowledge and Information Systems, 51(1):61—
87, 2017. doi: 10.1007/s10115-016-0968-2 2

Rob Behnke. Explained: The EasyFi Hack April
2021. https://www.halborn.com/blog/post/
explained-the-easyfi-hack-april-2021, 2021. [Online;
cessed 19-March-2025]. 7

M. A. Rodriguez. The gremlin graph traversal machine and language. In
Proceedings of the 15th Symposium on Database Programming Languages,
pp. 1-10. ACM, Kohala Coast, Aug. 2015. doi: 10.1145/2815072.2815073
3,9

H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness:
An efficient algorithm for testing subgraph isomorphism. Proceedings
of the VLDB Endowment, 1(1):364-375, 12 pages, Aug. 2008. doi: 10.
14778/1453856.1453899 2

H. Song, Z. Dai, P. Xu, and L. Ren. Interactive visual pattern search
on graph data via graph representation learning. IEEE Transactions on
Visualization and Computer Graphics, 28(1):335-345, 2021. doi: 10.
1109/TVCG.2021.3114857 1,2

S. Sun, X. Sun, Y. Che, Q. Luo, and B. He. Rapidmatch: A holistic
approach to subgraph query processing. Proceedings of the VLDB Endow-
ment, 14(2):176-188, 2021. doi: 10.14778/3425879.3425888 2

A. Tamersoy, E. Khalil, B. Xie, S. L. Lenkey, B. R. Routledge, D. H.
Chau, and S. B. Navathe. Large-scale insider trading analysis: patterns
and discoveries. Social Network Analysis and Mining, 4:1-17, 2014. doi:
10.1007/s13278-014-0201-9 1

K. Thompson. Programming techniques: Regular expression search algo-
rithm. Communications of the ACM, 11(6):419—422, June 1968. doi: 10.
1145/363347.363387 2

J. Troidl, S. Warchol, J. Choi, J. Matelsky, N. Dhanyasi, X. Wang,
B. Wester, D. Wei, J. W. Lichtman, and H. Pfister. Vimo — visual analysis
of neuronal connectivity motifs. IEEE Transactions on Visualization and
Computer Graphics, 30(1):748-758, 2023. doi: 10.1109/TVCG.2023.
3327388 1,2,5

S. Van Den Elzen, D. Holten, J. Blaas, and J. J. Van Wijk. Dynamic
network visualization with extended massive sequence views. IEEE Trans-
actions on Visualization and Computer Graphics, 20(8):1087-1099, Nov.
2013. doi: 10.1109/TVCG.2013.263 5

H. Vargas, C. Buil-Aranda, A. Hogan, and C. Lépez. A user interface for
exploring and querying knowledge graphs (extended abstract). In Proceed-
ings of the 29th International Joint Conference on Artificial Intelligence,
article no. 666, 5 pages, 2021. doi: doi/abs/10.5555/3491440.3492106 2
T. von Landesberger, M. Gorner, and T. Schreck. Visual analysis of graphs
with multiple connected components. In Proceedings of the Symposium on
Visual Analytics Science and Technology, pp. 155-162. IEEE, Oct. 2009.
doi: 10.1109/VAST.2009.5333893 3

X. Wen, Y. Wang, X. Yue, F. Zhu, and M. Zhu. NFTDisk: Visual detection
of wash trading in nft markets. In Proceedings of the CHI Conference on
Human Factors in Computing Systems, pp. 1-15. ACM, 2023. doi: 10.
1145/3544548.3581466 1

ac-

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Wikipedia contributors.  Les Misérables — wikipedia.  https:
//en.wikipedia.org/w/index.php?title=Les_Mis%C3%
A9rables&oldid=1006098025, Mar. 2025. [Online; accessed

19-March-2025]. 7

J. Wu, D. Lin, Q. Fu, S. Yang, T. Chen, Z. Zheng, and B. Song. Toward
understanding asset flows in crypto money laundering through the lenses
of Ethereum heists. IEEE Transactions on Information Forensics and
Security, 19:1994-2009, 2023. doi: 10.1109/TIFS.2023.3346276 7

S. Yang, Y. Wu, H. Sun, and X. Yan. Schemaless and structureless graph
querying. Proceedings of the VLDB Endowment, 7(7):565-576, 2014. doi:
10.14778/2732286.2732293 1

Y. Ye, X. Lian, and M. Chen. Efficient exact subgraph matching via gnn-
based path dominance embedding. Proceedings of the VLDB Endowment,
17(7):1628-1641, Mar. 2024. doi: 10.14778/3654621.3654630 2

P. Yi, B. Choi, S. S. Bhowmick, and J. Xu. Autog: A visual query autocom-
pletion framework for graph databases. The VLDB Journal, 26(3):347-372,
Jan. 2017. doi: 10.1007/s00778-017-0454-9 9

S. Zhang, S. Li, and J. Yang. GADDI: Distance index based subgraph
matching in biological networks. In Proceedings of the 12th Interna-
tional Conference on Extending Database Technology: Advances in
Database Technology, pp. 192-203. ACM, Mar. 2009. doi: 10.1145/
1516360.1516384 2

Y. Zhao, S. Lv, W. Long, Y. Fan, J. Yuan, H. Jiang, and F. Zhou. Malicious
webshell family dataset for webshell multi-classification research. Visual
Informatics, 8(1):47-55, Mar. 2024. doi: 10.1016/j.visinf.2023.06.008 7
H. Zhou, P. Lai, Z. Sun, X. Chen, Y. Chen, H. Wu, and Y. Wang. AdaMotif:
Graph simplification via adaptive motif design. [EEE Transactions on
Visualization and Computer Graphics, 31(1):688—698, 11 pages, Sept.
2024. doi: 10.1109/TVCG.2024.3456321 3


https://neo4j.com/
https://networkx.org/
https://networkx.org/
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1109/TVCG.2017.2744898
https://doi.org/10.1145/2909132.2909246
https://doi.org/10.2312/evp.20221115
https://doi.org/10.14778/2735479.2735493
https://doi.org/10.1007/s10115-016-0968-2
https://www.halborn.com/blog/post/explained-the-easyfi-hack-april-2021
https://www.halborn.com/blog/post/explained-the-easyfi-hack-april-2021
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.14778/1453856.1453899
https://doi.org/10.14778/1453856.1453899
https://doi.org/10.1109/TVCG.2021.3114857
https://doi.org/10.1109/TVCG.2021.3114857
https://doi.org/10.14778/3425879.3425888
https://doi.org/10.1007/s13278-014-0201-9
https://doi.org/10.1007/s13278-014-0201-9
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://doi.org/10.1109/TVCG.2023.3327388
https://doi.org/10.1109/TVCG.2023.3327388
https://doi.org/10.1109/TVCG.2013.263
https://dl.acm.org/doi/abs/10.5555/3491440.3492106
https://doi.org/10.1109/VAST.2009.5333893
https://doi.org/10.1145/3544548.3581466
https://doi.org/10.1145/3544548.3581466
https://en.wikipedia.org/w/index.php?title=Les_Mis%C3%A9rables&oldid=1006098025
https://en.wikipedia.org/w/index.php?title=Les_Mis%C3%A9rables&oldid=1006098025
https://en.wikipedia.org/w/index.php?title=Les_Mis%C3%A9rables&oldid=1006098025
https://doi.org/10.1109/TIFS.2023.3346276
https://doi.org/10.14778/2732286.2732293
https://doi.org/10.14778/2732286.2732293
https://doi.org/10.14778/3654621.3654630
https://doi.org/10.1007/s00778-017-0454-9
https://doi.org/10.1145/1516360.1516384
https://doi.org/10.1145/1516360.1516384
https://doi.org/10.1016/j.visinf.2023.06.008
https://doi.org/10.1109/TVCG.2024.3456321

	Introduction
	Related Work
	Visual Graph Querying
	Subgraph Matching

	Background
	Graph Querying
	Graph Definitions
	Motif Definitions

	Informing the design
	Preliminary Study
	Design Requirements

	Envisage
	Query Expression
	Query Verification
	Progressive Query Execution
	Result Analysis

	Case Study
	Case 1: In-depth Analysis of Money Laundering Patterns
	Case 2: Rapid Character Relationship Querying

	User Interview
	Participants and Apparatus
	Procedures
	Results

	Discussion
	Expressiveness of Visual Graph Querying
	Limitations

	Conclusion

