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Fig. 1: The interface of VIOLET supports the in-depth explanation of the quantum neural networks. Encoder View (B) allows the
unveiling of the inner mechanisms of the data encoding process, working with a novel design satellite chart. Ansatz View (C) makes
users aware of the training process of the ansatz in terms of the rotation angles. Feature View (D) allows the representation of what the
model has learned through the color distribution of a novel design called augmented heatmap. Several complementary views (A) (E)
(F) are incorporated to boost the usability of VIOLET .

Abstract—With the rapid development of Quantum Machine Learning, quantum neural networks (QNN) have experienced great
advancement in the past few years, harnessing the advantages of quantum computing to significantly speed up classical machine
learning tasks. Despite their increasing popularity, the quantum neural network is quite counter-intuitive and difficult to understand,
due to their unique quantum-specific layers (e.g., data encoding and measurement) in their architecture. It prevents QNN users and
researchers from effectively understanding its inner workings and exploring the model training status. To fill the research gap, we
propose VIOLET, a novel visual analytics approach to improve the explainability of quantum neural networks. Guided by the design
requirements distilled from the interviews with domain experts and the literature survey, we developed three visualization views: the
Encoder View unveils the process of converting classical input data into quantum states, the Ansatz View reveals the temporal evolution
of quantum states in the training process, and the Feature View displays the features a QNN has learned after the training process.
Two novel visual designs, i.e., satellite chart and augmented heatmap, are proposed to visually explain the variational parameters and
quantum circuit measurements respectively. We evaluate VIOLET through two case studies and in-depth interviews with 12 domain
experts. The results demonstrate the effectiveness and usability of VIOLET in helping QNN users and developers intuitively understand
and explore quantum neural networks.
Index Terms—Data Visualization, Quantum Machine Learning, Qunatum Neural Networks, Explainable Artificial Intelligence (XAI)
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Quantum Computing (QC) has witnessed a remarkable development
in recent years with the proliferation of quantum computers [50, 56].
For example, Google conducted an experiment demonstrating quantum
supremacy [4] and recently shown promising results regarding quan-
tum error correction [1]. Among all the applications, machine learning
is an active field of quantum computing and has led to the rapid growth
of quantum machine learning (QML). Specifically, QML is an emerg-
ing interdisciplinary research direction utilizing quantum computing
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to solve classical machine learning problems with a significant speed-
up [65, 78, 85]. Analogous to neural networks [13, 29, 44], the most
crucial ingredient in QML is Quantum Neural Networks (QNNs). Quan-
tum neural networks leverage a sequence of quantum gates to operate
on quantum states with some of the quantum gates having variational
parameters to be trained, making them also called variational quantum
circuits [8, 12, 13]. Numerous prior works have studied how to advance
quantum neural networks from different perspectives [16, 51, 64].

Despite the proliferation of quantum neural networks in recent years,
they actually suffer from the same black-box problems as classical
neural networks. Specifically, they have proven to be counter-intuitive
and notably arduous for people to understand their abstract concepts
and underlying working mechanisms [20, 25]. Note that the overall
structure of quantum neural networks can be generally divided into
three quantum-specific layers, i.e., data encoding, ansatz training, and
circuit measurement (Figure 2 A ), where the ansatz is the layers con-
taining trainable parameters. By surveying prior research on quantum
neural networks [6, 10, 39, 51, 70, 86] and working closely with six ex-
perts in quantum neural networks, we found that the non-transparency
issues derive from these quantum-specific components [12, 39, 57]. For
example, it is challenging for quantum neural network users and devel-
opers to understand how a prediction is made based on the basic units
of the network (i.e., the basis states) and how the single-qubit states
manipulated by rotation gates determine those intermediate basis states.
Similarly, people also struggle to grasp how the circuit is measured
from the quantum states back to the scalar values, because the principle
of the measurement is intrinsically based on quantum mechanics which
will prevent the users without relevant background from understanding
the workings with ease.

However, it is not a trivial task to address the above issues. Particu-
larly, the essential information to understand how they are working is
the basis states (like symbol |φ⟩ in Figure 2 B ), where the single-qubit
states (a.k.a., qubit state, as shown in Figure 2 B ) can be intrinsically
entangled together. It is difficult to explore the evolution of basis states
and the correspondence between basis states and single-qubit states.
Meanwhile, we already know that the measurement process converts
the quantum states into the final prediction results, and people expect
to achieve an intuitiveness of what “features” the model has learned.
But the point is how to reflect the predicted classes of data points and
explain this measurement process simultaneously within the constraint
of quantum mechanics remains a demanding task. Prior studies have
presented various visualization approaches to improve the explainabil-
ity of deep neural networks in traditional computing [14, 18, 42, 47, 73],
covering deep neural network models like convolutional neural net-
works [41], generative adversarial networks [34], and graph neural
networks [32,43]. Despite their effectiveness for traditional deep neural
networks, they cannot be simply applied to explain quantum neural
networks due to the huge difference between traditional computing
and quantum computing, such as the model components, basic units
(i.e., quantum states), and the trainable parameters (i.e., rotation angles)
illustrated above.

To fill the research gap, we propose VIOLET , a Visual analytIcs ap-
proach fOr expLainable quantum nEural neTworks. We first followed
a user-centered design process [48] to distill the design requirements
for explaining quantum neural networks by working closely with six do-
main experts. Guided by the collected design requirements, we develop
a visualization system VIOLET , which mainly consists of three visual-
ization views: Encoder View, Ansatz View, and Feature View, which
corresponds to the three major layers in the architecture of quantum
neural networks. Specifically, Encoder View intuitively explains how
the classical dataset has been encoded into quantum states. Ansatz View
reveals the workings of the training process along the variational cir-
cuits. Both Encoder View and Ansatz View are built upon a novel visual
design called satellite chart, which can intuitively explain the trainable
parameters by visually displaying basis states and qubit states as well as
their correspondence. Feature View facilitates the understanding of the
learned features by quantum neural network and further explains the
circuit measurement, where a novel design called augmented heatmap
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Fig. 2: A two-qubit example of quantum neural networks [57]. (A) The
architecture of the circuit, including the data encoding, ansatz, and the
final measurement. (B) The detailed illustration of the data encoder and
the subsequent quantum state |φ⟩, where the qubit state |ϕ⟩ satisfies
|φ⟩= |ϕ1⟩⊗ |ϕ2⟩.

is proposed to achieve both goals. We conducted case studies and
in-depth interviews with 12 domain experts with carefully-designed
tasks to extensively evaluate the effectiveness and usability of VIOLET .
The results show that VIOLET can effectively help quantum neural
network users and researchers intuitively understand the behaviors of
quantum neural networks.

The major contributions of this paper can be summarized as follows:

• We formulate the design requirements for visualizing and un-
derstanding quantum neural networks by working closely with
domain experts of quantum machine learning.

• We develop VIOLET , a visual analytics approach to help domain
users and developers easily understand the input dataset encoding,
ansatz training and final output measurement of quantum neural
networks. Two novel visualization designs, i.e., the satellite chart
and augmented heatmap, are proposed. To the best of our knowl-
edge, VIOLET is the first visualization work towards achieving
explainable quantum machine learning.

• We conduct two case studies and in-depth expert interviews to
evaluate the effectiveness and usability of VIOLET .

To boost the impact of our paper, we make the source code of the
VIOLET system, two visual designs, and datasets publicly-available 1.

2 Related Work
Our work is relevant to prior research on visualization for quantum
computing and visualization for explaining deep neural networks.

2.1 Visualization for Quantum Computing
We classify the existing visualization approaches for quantum com-
puting into two categories based on the objectives in the paper, i.e.,
quantum circuit visualization and quantum state visualization.

Quantum circuit visualization. Basically, quantum circuits can
be grouped into two types, i.e., static quantum circuits and variational
quantum circuits [24], while most of the prior work focuses on explain-
ing the former. According to the application scope, we further grouped
the existing work into two categories, i.e., generally-applicable visu-
alization and algorithm-specific visualization. Generally applicable
visualization indicates those approaches that can be applied to arbi-
trary quantum circuits. For instance, Williams et al. [81] leveraged a
quantum simulator to compute the probability of qubit states, making
the functionality of each quantum gate easier to understand. Different
from static quantum circuits, QuantumEyes [60] aims to enhance the
interpretability of quantum neural networks. Furthermore, to address
another major challenge regarding understanding quantum comput-
ing [21], i.e., the noises hidden in quantum devices, Ruan et al. [61]

1https://violet-source.github.io/



proposed a visualization tool to facilitate the noise-aware execution
of quantum circuits on real quantum computers. Different from the
generally-applicable visualization, algorithm-specific methods aim at
specific quantum algorithms, without the generalizability like the afore-
mentioned approach. For example, Karafyllidis et al. [36] studied how
to improve the transparency of the Quantum Fourier Transform (QFT)
via the matrix-like visualization.

While all the above methods focus on the visualizations of static
quantum circuits, they can hardly aid the explanation of variational
quantum circuits, like quantum neural networks, which contain a set
of specific properties, like the trainable variational parameters and the
numerous iterations for the model training. In contrast, our approach
VIOLET is tailored for the interpretation of the behaviors of variational
circuits.

Quantum state visualization. We summarized this type of re-
lated work into two groups, i.e., state vector-based approaches and
probability-aware approaches, based on whether the visualization can
reflect the probability of each basis state. For the first category, the
most widely-used visual representation in the quantum computing com-
munity is called Bloch Sphere [11]. This method visualizes the pure
single-qubit state using a point on the three-dimensional unit sphere.
Extended from Bloch Sphere, there was a series of variations such as
the two-qubit [45] and multiple-qubit [3] quantum state visualization.
Apart from the 3D representation, prior work also studied how to rep-
resent the quantum state on 2D shapes. For instance, Wille et al. [80]
visualized the components of state vectors using a tree-like design.
In addition, Zulehner et al. [58] implemented the decision diagram
to indicate the matrix of the quantum state’s state vector. Despite its
intuitiveness, this method cannot interpret the probability distribution
and measurement of variational quantum circuits. Compared to state
vector-based approaches, probability-aware methods can reflect the
measured probability of the basis states building on the state vector
representation. Specifically, Galambos et al. [23] used a set of rectan-
gles to represent the multiple-qubit system with probability awareness.
Ruan et al. [62] introduced a geometrical representation to visualize
and further explain the measured probability. Phase disk [30] visualizes
the probability of State |1⟩ while it cannot support the explanation of
basis states’ probability.

Although some of the aforementioned methods (e.g., Bloch Sphere)
can visualize the state of a single qubit, making it possible to reflect the
functionality of Pauli rotation gates, they cannot depict the correlation
between the single qubit states and basis states due to the constraint of
single qubit scenario. On the other hand, our proposed approach can
visualize the impact of the rotation angles, as well as the explanation of
the measurements of the quantum neural networks in terms of the basis
states.

2.2 Visualization for Explaining Deep Neural Networks
With the growing complexity of both data and deep neural network
models, various visualization approaches have been developed to help
us understand [17, 33, 46, 67, 75], diagnose [32, 41, 68, 72, 74, 83], and
even improve [63, 82, 83] the models. Specifically, existing approaches
can be grouped into two categories [40]: feature-oriented and evolution-
oriented.

Feature-oriented visualization approach helps to understand what
features the model learns during the training process and how these
features affect the predictions. For example, Grad-CAM [67] explains
the CNN model by emphasizing the crucial areas in the input image
that are important for predicting a given concept, showing which fea-
tures in the input images are significant. VBridge [17] goes a further
step of model explanation by associating influential features with the
corresponding raw data. These methods predominantly focus on single-
modal data, like images and tabular data. Conversely, M2Lens [76]
employs a tree-like layout to visualize multimodal features, including
verbal, acoustic, and visual elements, facilitating a multi-faceted ex-
ploration of such features and multi-level visual explanations on their
influences. These approaches mainly focus on the input-level features,
but more and more techniques are being developed to interpret models
at the neuron-level [22, 26, 52, 54].

Evolution-oriented approaches primarily concentrate on the network
training process [40]. These methods often capture and compare mul-
tiple model snapshots at various iterations to illustrate the model’s
evolutionary behaviors. Re-VACNN [19], for instance, offers real-time
visualization of each layer’s activations and changes throughout the
training of CNN models. CNNComparator [84] employs matrix visual-
ization to emphasize the weight discrepancies within a layer’s filters,
facilitating side-by-side comparisons of neuron features for two model
snapshots. However, the utility of such systems is limited by the chal-
lenges in selecting and comparing relevant filters and iterations among
the many options available.

The above approaches are effective for classical neural networks, but
they cannot be directly used for explaining QNNs due to the inherent
quantum-specific properties of QNNs, such as data encoding, ansatz
training, and circuit measurement process [12, 39, 57], which is the
focus of this paper.

3 Background
This section introduces the background of quantum computing relevant
to our study, including the basic building blocks and the quantum neural
networks.

3.1 Building Blocks in Quantum Computing
Qubits, or quantum bits, are the basic units of quantum informa-
tion [49]. There are two orthonormal basis states for a qubit, i.e.,
|0⟩ and |1⟩. However, unlike classical computing, a qubit can be in a
state that is both |0⟩ and |1⟩ at the same time, which can be represented
as follows:

|ψ⟩= α |0⟩+β |1⟩ , (1)

where α and β are complex numbers representing the amplitudes of
the states. This property can allow quantum computers to perform com-
putations at an exponentially faster rate than classical computers [59].

Quantum gates are the quantum version of classical logic gates,
such as the blocks in Figure 2 B . Each quantum gate has a unique
function, such as creating superpositions or performing logical oper-
ations. For example, the Hadamard gate creates superposition, the
CNOT gate entangles qubits, and the Pauli-X gate acts as a quantum
NOT gate. Quantum gates are combined to form quantum circuits,
which are analogous to classical circuits but operate on quantum bits.
The sequence and arrangement of gates in a quantum circuit determine
the outcome of the quantum algorithms.

Quantum states encapsulate the information encoded in qubits
and describe the overall state of a quantum system [9], as shown in
Figure 2 B the symbol |φ⟩. Quantum states are typically represented
as vectors in a complex vector space. As qubits pass through quantum
gates, these states evolve dynamically, reflecting the transformations
applied to the qubits. Quantum states can involve multiple qubits, and
representing their collective state requires the use of the tensor product.
For instance, the state of a N qubit system consists of the tensor product
of N single-qubit states:

|φ⟩= |ϕ1⟩⊗ |ϕ2⟩⊗ · · ·⊗ |ϕN⟩ , (2)

where |φ⟩ represents the qubit state [37, 79], as shown in Figure 2 B .
Building upon this, any quantum state with N qubits can be represented
as a linear combination of 2N basis states, which satisfies:

|φ⟩= α · |0 · · ·00⟩+β · |0 · · ·01⟩+ · · ·+ γ · |1 · · ·11⟩ . (3)

Similar to the single qubit state, the coefficients (e.g., α) are ampli-
tudes that describe the basis state (|0 · · ·00⟩). Meanwhile, regarding
how to calculate the single-qubit state’s probability concerning the basis
states, we can solve it as follows:

Pr(qn = |x⟩) =
2N−1−1

∑
i=0

Pr(basis stateqn=x),x ∈ {0,1}, (4)



where N represent the total number of qubits and n ∈ [1,N] denotes the
number of qubit. For example, the probability that the Qubit 1 equals
0 for the two-qubit circuit case can be calculated as: Pr(q1 = 0) =
Pr(|00⟩)+Pr(|01⟩).

3.2 Quantum Neural Networks
We introduce the three components of quantum neural networks [57],
i.e., data encoding, ansatz, and measurement.

Data encoding, as the first step of a quantum neural network, is used
to convert the input data to quantum states, so that it can be processed
by a quantum neural network as the quantum states serve as the carriers
of information [2, 7]. Thus, data encoding is essential for leveraging
the unique capabilities of quantum neural networks. Angle encoding is
the most popular data encoding method [55, 77]. Given the number of
qubits n for data encoding, we can use a circuit Sx to perform the data
encoding:

Sx |φ⟩= Sx |0⟩⊗n = |x⟩ , (5)

where x represents the data points and the initial state |φ⟩= |0⟩⊗n [10].
The data encoding performs the state preparation step, followed by the
trainable model called an ansatz.

Ansatz is a crucial component of a quantum neural network. Specifi-
cally, the quantum circuit U(θθθ) is parameterized by a set of parameters
θθθ , the rotation angles of rotation gates are the actual variational param-
eters to be optimized to fit the training datasets. At each iteration of
the training process, a cost function C is calculated based on the mea-
surements of the quantum circuit for a given input state |φ0⟩. During
the training process, the properties of the ansatz vary as the rotation
angles, determining the function of the rotation gates, are optimized.
The resulting quantum state |φθθθ ⟩ after applying the ansatz circuit is
calculated as follows [31, 77]:

|φθθθ ⟩=U(θθθ) |φ0⟩ , (6)

where U(θθθ) is the unitary operator that represents the ansatz circuit
with its parameter values θθθ , and |φ0⟩ is the initial quantum state. The
near-term quantum neural networks always use the hardware-efficient
ansatz for the implementation [15, 27, 35], which contains a sequence
of single-qubit rotation gates, e.g., RX gate.

Measurement allows quantum neural networks to obtain classical
information from quantum states, thus enabling the interpretation of
quantum information. Specifically, measuring the expectation values
of the qubits is one of the key components in the training and learning
process [39, 69]. Here, we take a two-qubit variation quantum circuit
as an example to illustrate the expectation value E(θθθ), which can
be described as the result of the probability of |0⟩ subtracted by the
probability of |1⟩ if we measure Pauli operator Z of the first qubit:

E(θθθ) = ∑
i∈{0,1}

Pr(|0i⟩)− ∑
j∈{0,1}

Pr(|1 j⟩). (7)

Based on the normalization constraint [5, 49], the sum of all basis
states’ probabilities is always equal to 1:

∑
i∈{0,1}, j∈{0,1}

Pr(|i j⟩) = 1 (8)

4 Informing the design
In this section, we introduce the preliminary study and report the design
requirements distilled from the study.

4.1 Preliminary Study
We conducted a carefully-designed preliminary study to collect the
actual design requirements faced by the researchers, following the
guidance of the design study methodology by Sedlmair et al. [66]. We
first report the participants involved in the study; then we detail the
process of the study.

Participants: The study involved six domain experts in quantum
computing: 5 participants from educational institutions in the U.S. (P1-
5) and one researcher from a national research laboratory in the U.S.
(P6). Among them, P1-3 and P6 study the quantum neural networks,
while P4-5 are working on the variational quantum eigensolver (VQE)
algorithm. Notably, four participants (P1-3, P6) are professors, who
are more senior and are with an average of 8.6 years of research and
teaching experience, while the other two (P4-5) are Ph.D. students
working on quantum neural networks for about 3.5 years.

Procedures: The entire study was divided into two stages, i.e., the
co-design and testing stages. We first began the co-design process by
performing one-on-one, semi-structured, hour-long interviews with all
participants (P1-6). Every participant was encouraged to describe the
realistic challenges faced during the stage of learning and understand-
ing quantum neural networks in a think-aloud manner. Based on their
feedback, we formulated the initial design requirements and proposed
low-fidelity visual designs. Next, we presented the solutions to the
two Ph.D. students (P4-5) and asked them to test the initial designs
with the in-hand datasets extracted from the training process of the
ansatzes. This process is to guarantee that our design can seamlessly
fit into their routine tasks. Then, we invited and asked them several
questions regarding their suggestions and concerns upon finishing using
the designs. During the meeting, we observed and took notes on the
feedback from participants. In accordance with the summarized feed-
back in the second round, we further modified the designs accordingly
and developed the demo system of VIOLET with the integration of the
fine-tuned visual designs.

4.2 Design Requirements
We compiled six design requirements and grouped them into two cate-
gories: quantum-specific explorations ( Quantum ) and classical neural
network-applicable analysis ( Classical ).

R1 Quantum Provide the representation of the encoded data. All
participants (P1-6) agreed that it is challenging for people to un-
derstand the data encoding process of converting classical data
into quantum states. They hinted to us that the intuitive prop-
erties in quantum information, e.g., the probability of quantum
states, would be helpful to connect the dots between classical and
quantum information. P2 also confirmed that data encoding is the
primary stumbling block for beginners to learn by transferring the
classical neural network to the quantum counterpart.

R2 Quantum Explain the effects of rotation angles. All partici-
pants (P1-6) strongly suggested that the visualization should focus
on visually interpreting how the trainable parameters, i.e., rotation
angles, determine the quantum states. Moreover, P1-2 empha-
sized that observing how the quantum states are determined by the
trainable parameters in different iterations is of great importance.

R3 Quantum Detail the prediction along the circuit. Four partic-
ipants (P1-3, P6) expected the approach to enable the detailed
analysis of how the final prediction is made through the entire
circuit. In particular, P6 commented that focusing on how a data
point’s quantum state will be modified across iterations is use-
ful in understanding the ansatz. Moreover, P1 also expressed the
need to “display the original quantum circuit diagram for a better
alignment with the visualization”.

R4 Quantum Support the detailed explanation of the measure-
ment. Three participants (P2-3, P5) emphasized the importance
of explaining the measurement visually. “I really hope there exists
a function to make the calculation of the measured expectation
values more intuitive.” P2 commented. P3 also mentioned that
enabling the validation of the basis states based on the normal-
ization constraints will enhance confidence in the correctness of
measured values.

R5 Classical Build an intuition about the learned features. Four
participants (P2-3, P5-6) encouraged us to provide a representa-
tion of the “features” learned by the model. P5 pointed out that
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Fig. 3: The system architecture of VIOLET contains three modules (a
data storage module, a processing module, and a visualization module)
based on the quantum neural network.

the heatmap-like visualization can facilitate the finding of this pat-
tern inspired by the classical XAI methods. The four participants
all agreed that this intuitive representation can significantly flatten
the learning curves for learners with a background in classical
neural networks.

R6 Classical Show the statistics of the model training. According
to the feedback from three participants (P1, P3-4), it will be
necessary to reflect the statistical data, such as the charts showing
the changes in accuracy, loss, and trainable parameters across the
iterations. Additionally, P4 also expressed the need to visualize
the training dataset enabling a more flexible user interaction.

4.3 Dataset
Guided by the above requirements, we implemented the models with
the TorchQuantum [71] library and then collected the following data:

• Unique properties of variational quantum circuits. We ex-
tracted the basic units of the quantum neural networks, including
the intermediate quantum states, variational parameters (i.e., ro-
tation angles), Pauli rotation gates, and the measurements (i.e.,
expectation values). Furthermore, we calculate the probability of
single-qubit states and basis states based on the above variables.

• Conventional methods applicable to classical neural networks.
The conventional metrics that trace the performance of the clas-
sical neural network are also suitable for evaluating quantum
models. Specifically, we performed the validation and then ex-
tracted the performance metrics such as the training loss and
accuracy across different epochs.

5 VIOLET
We propose VIOLET , a visual analytics approach to facilitate the learn-
ing and understanding of quantum neural networks. Figure 3 shows the
architecture of VIOLET .

5.1 Encoder View
The Encoder View (Figure 1 B ) aims to allow users to explore and
understand how the data encoding step works via the visualization
of the encoded classical data (R1), i.e., quantum states. Given that
the rotation gates inside the data encoder calculating the basis states
are actually acting on the single qubit, we propose a satellite chart

(Figure 4 A ), which can enable the explanation of the data encoder by
correlating the single-qubit state with the basis states.

Satellite chart. In this section, we use a 3-qubit quantum neural
network as an example to illustrate the visual designs. As shown in
Figure 4 A1 , three axes are used to locate the digit of the quantum states,
where the axis is spaced with an equal degree from its neighboring
axis. For each digit, given there are two states for one digit position
(i.e., |0⟩ and |1⟩), we use the same position on each axis to locate
the two states, e.g., for qubit 0, left-hand side position is for state |0⟩
and the state |1⟩ is on the right-hand side. For the representation of
basis states, a set of circles is arranged concentrically, forming a larger
circular pattern (Figure 4 A2 ), e.g., eight basis states for the 3-qubit
case (23 = 8). Meanwhile, we encode the probability of each basis
state as the color of the circles, ranging from light green to dark green.
To correlate the probability of the single-qubit state with the basis state,
we first utilize the lines linking from the circle of the basis state to the
position where the single-qubit state is located on the respective axis.
For example, the data entity in Figure 4 A indicates the basis states
of |110⟩. Next, we color the connection line using the color the same
as the circle. In this way, the line segments with the same digits of the
basis states are gathered around the position of the axis. According to
quantum mechanics, the probability of the single-qubit values equals
the sum of the probabilities of the basis state with that value, e.g.,
Pr(q0 = 1) = Pr(|10⟩)+Pr(|11⟩) for the two-qubit case. In a satellite
chart, the above sum is encoded by the color around the gathered area
of the digit (Figure 4 A3 ). Note that we did not consider the encoding
of line width for visualizing the basis state’s probability since we found
that it would introduce a severe overlapping between lines, making the
design fail to explain the single-qubit state’s probability. Moreover,
to improve the quantity representation of the above constraint, we
implement a stacked bar chart to enable a more accurate perception,
where each section indicates the basis state’s probability and the total
height depicts the single-qubit state’s probability ((Figure 4 A4 )). We
name the design “satellite chart” due to its notable similarity to the
metaphor of a set of satellites (single-qubit states) positioning around a
planet (basis states).

Design alternatives. We considered several design alternatives
before finalizing the current visual design. Figure 4 B uses the axes
forming the star to encode the positions of the single-qubit states, while
each basis state’s probability is also represented by the color of the
respective line segment. But this method encodes the states with the
same semantics, e.g., |00⟩ and |11⟩, by the lines with different lengths,
introducing the perceptive bias for the comparison. Hence, we propose
another design (Figure 4 C ) to aid this issue by rotating the direction
of all axes. However, based on the experiment of the real data, we
found that there are always two overlapped lines connecting the same
two points of the digits, preventing one of the lines from being seen at
the time. At last, we propose the current design where line segments
can be naturally separated from each other, making the perception more
accurate without the line overlapping.

5.2 Ansatz View
The Ansatz View supports the in-depth analysis of the evolution of the
ansatz and training process. We propose a matrix-like layout to denote
the changes of ansatzes during the training process (Figure 1 C ). Since
the ansatz layer uses the same type of rotation gates, e.g., hardware-
efficient gates like RX gate, we apply the satellite chart to portray the
behavior of the ansatz similar to the data encoder.

Evolution of rotation gates (R2). In VIOLET , we use the quantum
state visualization to represent the evolution of the Pauli rotation gates
along the training process. We first define the quantum gates with the
same implementation position as a “step”. To enable the exploration
in terms of the quantum gates, we use the column of the matrix for
the arrangement of all satellite charts of the same gate in the circuit.
As shown in Figure 1 C , the matrix cells can be unfolded if the user
clicks the columns of quantum gates of interest. For each cell of the
matrix, we then use the donut chart to depict the change of the trainable
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Fig. 4: Satellite chart. (A) The design illustration of the satellite chart.
(B) & (C) Design alternatives of satellite chart, where (B) generates line
segments with different lengths, and (C) contains severe overlapping of
each line segment.

parameters (i.e., angles of the Pauli rotation gates). The section size of
the donut chart outlines the difference in the angle change between the
current epoch and the first epoch. Note that we grouped the controlled
logic gates between two groups of Pauli rotation gates as one step due
to the absence of the trainable parameters for these controlled gates.

Drill-down of the prediction process (R3). Apart from the analysis
of the rotation gates, revealing how the quantum state of a data point is
calculated and finally predicted is also crucial for the interpretability
enhancement of the variational circuits. Building on the matrix layout,
we design each row of the matrix to show the prediction process of a
data point. Specifically, each cell of the row contains a satellite chart to
denote the states after a step of the entire variational circuit.

5.3 Feature View
The Feature View aims to provide the user with an intuitiveness of what
“feature” the quantum circuit learned (R5). Meanwhile, the explanation
of the measurements is also helpful for users to grasp how the measuring
components work (R4). To meet the aforementioned needs, we develop
the Feature View with a novel design named “augmented heatmap”
embedded into the view.

Feature sampling. We first uniformly sample the feature data of
each dimension; and then feed the dataset into the quantum neural net-
work to calculate their prediction during the valid process. Specifically,
we first normalized each dimension of the features to the range [−1,1].
Then, we generate a set of artificial datasets by normally sampling
the values and slicing the data of each dimension into 15 pieces. This
operation can fulfill the entire 2D plane and also keep a high resolu-
tion of each augmented heatmap’s units, enabling users to perceive the
feature’s learned pattern easily.

Augmented heatmap. To reveal the measurement rules (Equation
7) while displaying the normalization constraint (Equation 8) which
allows the validation of the basis states, we propose a visual design of
the augmented heatmap to solve the above challenges. With the sam-
pled data and their prediction above, we first apply the normalization
constraint (Equation 8) by encoding the probability of all basis states by
the section size of the donut chart, as shown in Figure 5 C4 . The donut
sections in light blue represent the probability of |0⟩ while the donut
sections in light red depict the probability of |1⟩ based on Equation
4. Then we visualize the measured expectation values, as Equation 7
shows, using the section of the pie within the outer donut chart (Figure
5 C1 ). To visually reflect what Equation 7 specifies, the outer larger

       The section of the donut chart         represents 
the basis states, whose area depicts the probability.

       The pie      within the inner area indicates 
substracting |1>’s probability from |0>’s.

       The outer segment       visualizes the minuend, 
i.e, probability of |0>.
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Fig. 5: Feature View and augmented heatmap. (A) Feature View visual-
izes what the model learned via the background of a matrix consisting
of augmented heatmaps. (B) The design alternatives of the augmented
heatmap. (C) The fine-grained mode of the augmented heatmap, allow-
ing the explanation of the measured values.

section of the donut section is used to show the minuend (Figure 5 C2 ),
while the inner arc denotes the subtrahend (Figure 5 C3 ). In this way,
the size of the pie section can be visually explained via the difference.

Display modes. The augmented heatmap aims to reflect the learned
“feature” and the explanation of the expectation value measurement
simultaneously. To this end, the Feature View applies the coarse-
grained mode of the augmented heatmap (Figure 5 A1 ) to directly
reflect the confidence of the predicted class of the sampled units, which
can intuitively exhibit the learned features of the ansatz. Meanwhile,
when the user clicks a coarse-grained augmented heatmap, a fine-
grained mode chart (Figure 5 C ) will pop up to visually explain how
the expectation value is calculated with a more detailed illustration.

Design alternatives. We considered other two design alternatives
for the explanation of the measured expectation values. Figure 5 B1
visualizes the probability of the basis states, preserving the nature that
the left-side group of blocks with light blue represents the probability of
|0⟩ while the block group on the other side visualizes the probability of
|1⟩. In this way, users can perceive which group has a larger probability
via the area. However, this method cannot visualize the prediction of
the class directly without a representation of difference (e.g., Figure
5 C1 ), making the Feature View difficult to reveal the model’s learned
features. Figure 5 B2 is the initial design of the augmented heatmap.
However, this approach cannot obviously reflect the feature distribution
since the outer donut section is relatively small, especially in the case
where the probability of the two classes is close. To aid all the above
issues, we finalize the design as Figure 5 C .

5.4 Complementary Views
To better trace the training process and the model performance (R6),
we embed a series of classical statistical charts into VIOLET. For
example, as shown in Figure 1 A , a dataset overview is used to show
the distribution of the training set, where the x- and y-axis represent
the two dimensions of data points. We then add the charts of loss
and accuracy to reflect the model performance in a conventional style
(Figure 1 E ). Also, the chart showing the rotation angles’ changes
will be rendered if the user clicks the “angle” button in the “Statistic



selection” item in the control panel. During the interview with the
participants, they also found it hard to perform the comparison with the
original quantum neural network. To solve the issue, we implement a
quantum circuit diagram to allow the alignment with the Ansatz View
with ease (Figure 1 F ), where the type of rotation gates and parameter
names are explicitly highlighted.

6 Case Study
In this section, we report two case studies with two different quan-
tum neural networks to demonstrate the effectiveness of VIOLET . To
achieve this, we focus on the variational quantum classifiers since it is
widely used to solve classification tasks in the near-term era [28,38,44].
The users involved in our case study are two experts in quantum com-
puting (E12 and E2) who participated in the expert interview as well.
To assess the potential usage of VIOLET , we propose two types of
workflow, i.e., forward exploration and backward exploration, which
are used for the diagnosis of the model and debugging for the cause of
incorrect prediction reversely.

6.1 Case Study I - Forward Exploration
We worked with E12, who is a Ph.D. student with 3.5 years of experi-
ence in quantum neural networks, to explore the model’s prediction pro-
cess. As suggested by E12, we reproduced the standard 2-dimensional
datasets introduced by Zhou et al. [86] in advance. We then imple-
mented the 3-qubit encoding and ansatz layer following the tutorial by
Paddle Quantum [53]. He was asked to conduct the analysis task of
forward exploration.

Enhance the transparency of data encoding. After a glance at
the scatter plot of the dataset (Figure 1 B ), E12 first randomly selected
a data point data_88, whose dimensional data is [−0.58,0.10]. By
clicking the data point, the Encoding View appeared along with the
satellite chart. E12 then quickly found that among all basis states
generated from the data_88, there are only two obvious basis states:
State |000⟩ in dark black with the probability of 90.5% and State |100⟩
in grey with the probability of 9.3%. Keeping this in mind, E12 then
notices that the single-qubit probability of each qubit contains a small
portion of |1⟩, while the most part of the probability is |0⟩, as the height
of stacked bar charts indicated. E12 commented “This is exactly what
I expected. If the encoded data are all 0, the basis state will be |000⟩
in the initial stage. However, after being rotated by the rotation gates
of data encoding, each single-qubit state is slightly modified by the
dimensional data [−0.58,0.10]. The first attribute, (i.e., -0.58) rotates
the state of the first qubit, making the circle color of |100⟩ grey instead
of white.” We reminded him of the quantum circuit diagram (Figure
1 F ) showing the architecture of the state preparation process. Based
on this, E12 further reported that the absence of the rotation gates on
Qubit 2 explains why the probabilities of all basis states with the Qubit
2 of |1⟩ are 0. This finding can also confirm the pattern that the line
segment color gathered around the position of “q2=1” is totally white.

“I’m surprised that Quantum satellite chart tells me how the classical
data is encoded and explained by the single-qubit state.” E12 praised.

Identify the hidden reasons for the model prediction. After ex-
ploring the data encoding stage, E12 proceeded to analyze the trainable
model, i.e., ansatz. By glancing at the line charts in Figure 1 E , E12
noticed that the accuracy suddenly increased around Epoch 40 and
stay still after Epoch 80. E12 thus browsed the satellite charts between
Epoch 40 and 80 in the Ansatz View. Hinted by the circuit diagram, E12
noticed that the expectation value of the variational circuit is calculated
by measuring Qubit 0. Bearing this in mind, E12 easily found that the
probability that Qubit 0 equals 0 is the larger one, while the probability
that Qubit 0 equals 1 became larger 40 iterations later. “This indicates
that the predicted class of the data point changes from A to B, which is
caused by the increasing of the probability of Basis state |100⟩, |101⟩
and |110⟩ (indicated by their line segment color of Figure 1 C1 ).” To
figure out how the rotation angles contribute to this prediction, E12
analyzed the Ansatz View and then reported that the ring (donut chart)
of θ9 shows a large change throughout the training process. This will
increase the probability of q0 = 0 significantly increase (because the

θ9 acts on Qubit 0), which exactly explains why the probability of the
above three basis states is much larger than before (because the first
digits of the basis states are |1⟩). E12 commented, “VIOLET reveals
the reasons that lead to the final predictions of the data points. I was
really confused before using VIOLET”.

Unearth the evidence of circuit measurements. Upon analyzing
the training process, E12 then started to focus on the validation stage
via the Feature View. First, E12 inspected the initial patterns through
Feature View, where the background of the entire map is color blue
(Figure 1 D1 ). Meanwhile, E12 noticed that the “confidence” of each
augmented heatmap is high, indicated by the size of the pie section.
Next, E12 moved on to explore the Feature View in Epoch 100 when the
model is already converged. He quickly found that the area highlighted
has changed into red impacted by the corresponding set of data points
with class B. Also, E12 noticed the area where most data points are
with the same class has higher confidence compared to those points
with mixed classes. And then, E12 found the data point highlighted
by the yellow arrow was incorrectly classified. He thus clicked the
corresponding augmented heatmap to figure out the reason. As shown
in Figure 1 D2 , the probability of |0⟩ is significantly larger than the
probability of |1⟩, indicated by the donut sections in blue and red
respectively, which reveals the rationale of this incorrect classification.

“The expected larger size of the donut section of |1⟩ is mainly caused by
the Basis state |110⟩, offering me the clue to solve this issue.”

6.2 Case Study II - Backward Exploration
We worked with E2, who has 8 years of working experience in quantum
computing, to investigate the 4-qubit variational circuits with the dataset
generated by the make_circles function from the scikit-learn library.
The architecture of the circuit remains the same as in the previous case.
He was asked to use VIOLET to conduct the backward exploration for
diagnosing quantum neural networks.

Identify the incorrectly-classified data points. E2 started by
observing the augmented heatmap to identify the target data point.
E2 first glanced at the line charts (Figure 6 C ) and easily found that
the accuracy started to increase in Epoch 1 and converged around
Epoch 50. So he selected Epochs 1, 25, and 50 to analyze further. As
shown in Figure 6 A1 , the variational parameters were just initialized
and the features learned by the model were randomly distributed, as
indicated by the background augmented heatmap. After 25 iterations
of training, the uncertainty of the model is high, where the confidence
of predictions for Class A and B are relatively close (Figure 6 A2 ). “I
think the prediction will be totally random because the model seems
to be uncertain for any input attributes.” Then, in Epoch 50, the
background is divided into three layers, while the middle layers in blue
are dominated by the blue dots in the center and cause the red dots to
be predicted incorrectly (Figure 6 A3 ). “This somehow shows that the
model is too weak to capture the underlying patterns in the data.” Thus,
E2 then planned to investigate the possible ways to improve the model
to be better.

Formulate a strategy to improve the model. To analyze the
incorrectly-classified data point highlighted by the yellow arrow, E2
first scrolled the satellite charts to Epoch 100 and noticed that the
changes of the rotation angles were becoming fewer along with decrease
of the circuit depth. as shown in Figure 6 D1 to Figure 6 D4 . “This
really makes sense to me. Closer to the measurement of the first qubit,
all parameters (except CNOT gates without parameters) will ‘draw
together’ to it and other parameters will be that sensitive like in the
beginning.” Next, after browsing all satellite charts, E2 reported that
the effect of the layers of the CNOT gates is to “make all qubit states
with the similar probabilities like the height of the stacked bar chart
shows (Figure 6 B and Figure 6 D3 ).” However, the difference is that
the probabilities of basis states consisting of the single-qubit states vary,
which aims to “prepare the states to be classified in the final step”.
E2 then found that the probability of q0 = 0 is higher than that of
q0 = 1, which should be exactly the opposite case according to the data
point’s ground-truth label, i.e., Class B. This scenario indicates that
the Rotation angle θ12 rotates the states of Qubit 0, but does not work
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Fig. 6: The case for the backward exploration. (A) Augmented heatmaps in Epochs 1, 25, and 50. (B) The satellite charts after CNOT gates in
Epochs 1 and 25. (C) Statistic charts. (D) The satellite charts along the variational circuits in Epoch 100.

because θ12 also needs to fit other data points to make the classification
correct. “The finding hints me the reason for the mis-classified data
entities. The model performance can be improved by appending another
rotation gate on Qubit 0 to make the features of those data points on
edge be fitted and also make the ansatz more resilient and robust.”

7 Expert Interview
To further assess the effectiveness of VIOLET , we conducted in-depth
expert interviews with target users studying quantum neural networks.

7.1 Study Design
Participants and Apparatus. We recruited 12 participants (E1-12) (2
females, agemean = 33.2,agesd = 5.2) from six educational institutions
in the U.S. All participants were selected based on their relevance to our
research topic. Specifically, E1-3 study Error Mitigation in Quantum
Machine Learning (QML); E4-6 are working on Quantum Uncertainty
Analysis of QML; E7-9’s research directions are Quantum Simulator;
and other three experts (E10-12) mainly focus on Quantum Information.
None of the above experts participated in the study to collect design
requirements. The study was conducted via the Zoom meeting based
on the online interface we deployed in advance. All participants were
suggested to use a monitor with a 1920×1080 resolution.

Tasks. The primary four tasks were crafted to evaluate the effective-
ness of VIOLET regarding the explanation enhancement of quantum
neural networks. To this end, we designed seven tasks and then asked
all participants to accomplish them within a fixed time. A compre-
hensive list of tasks is shown in Table 1. Specifically, T1-4 aim to
assess the participants’ performance for the model’s training process
with the help of satellite charts, where T1-2 are presented to test the
data encoding and T3-4 are for the steps of the execution procedure
of the ansatz. Furthermore, T5-7 are used to evaluate the usage of the
augmented heatmap, which is targeted for the testing process.

Procedures. The study was undertaken using the online platform
VIOLET . We executed a one-on-one, semi-structured interview with
all expert participants. Initially, we showcased the visual design of
VIOLET , including the illustration of a satellite chart and augmented
heatmap. We then asked all participants to complete the seven tasks
on the platform. During the process, we recorded their comments and
the interactions. The duration of the above introduction lasts about 20
minutes. Subsequently, participants were requested to verbally describe
the findings during the task procedure. This step took approximately
40 minutes. After the description, we encouraged participants to share
their thoughts on the proposed visual designs in a think-aloud manner.
Moreover, participants are also asked to rate VIOLET on a 7-point
Likert scale based on the post-study questionnaire (Table 2), focusing

T1 Find the rationale of how classical data is encoded into
the quantum states.

T2 Identify all the basis states and then tell how they form
the single-qubit states.

T3 Trace back how the output quantum states were modified
by the rotation gates along the quantum neural network.

T4 Identify how the variational parameters (i.e., rotation
angles) were trained and further tell their impact on the
same rotation gates.

T5 Compare the distribution of augmented heatmaps and
then tell the model evolution.

T6 Pinpoint the impact of the training dataset on the featured
learned by the model.

T7 Tell how the incorrectly classified data point was mea-
sured based on the expectation values.

Table 1: All tasks are grouped by the steps along the training of quantum
neural networks, i.e., the data encoding (T1-2), training of ansatz (T3-4),
and testing stage (T5-7).

on design requirements we had previously outlined. The post-study
interview lasted about 20 minutes.

7.2 Results
We summarized and reported the qualitative feedback as follows:

Effectiveness. Most participants (ratingmean = 5.81,ratingsd =
0.83) praised VIOLET’s effectiveness in improving the explanability
of quantum neural networks. Specifically, E5 commented “Through
visualization, users can easily observe the impact of each parameter
update on the output, providing an efficient means to control and fine-
tune hyper-parameters in QML.” Also, three participants (E2-3, E12)
also confirmed the value of multiple views in VIOLET . E12 said, “The
first two views (i.e., Encoder View and Ansatz View) are elegant to
show how the parameters determine the output, which can provide
me with important clues to understand how the network is converged.”
In addition, E3 was really impressed by the Feature View, which can
“intuitively show how the loss is optimized in the certain region of
data attributes, making the overall heatmap change across the epochs.”
In addition, E11, who studied Quantum Information, also expressed
promising usage in other quantum applications such as quantum finance,
which is based on quantum neural networks.

Visual design. Most participants (ratingmean = 6.16,ratingsd =
1.21) are in favor of the novel designs integrated in VIOLET . E7, who
works on Quantum Simulator, commented on the satellite chart “I’m



Q1 The system can help me enhance the interpretability of
quantum neural networks.

Q2 The system shows a holistic picture of how the classical
data is encoded into quantum states.

Q3 The system enables the analysis of how a data point is
classified through a series of rotation gates.

Q4 The system provides me with an intuitive representation
of the features learned by the model.

Q5 The visual design is easy to understand.
Q6 The satellite chart can show how the rotation angles affect

the prediction.
Q7 The augmented heatmap can effectively explain the mea-

sured expectation values.
Q8 The interaction is smooth.
Q9 The interaction can support the forward exploration of

explaining the prediction and the backward exploration
of the circuit debugging.

Q10 The system is easy to use.
Q11 The visual designs would fit into my routine tasks of the

development of quantum neural networks.
Q12 I will recommend the visual analytics system to my col-

leagues working on quantum computing.

Table 2: The questionnaire consists of four parts: the effectiveness of
interpretability enhancement (Q1-4), the visual design (Q5-7), the user
interactions (Q8-9), and the usability (Q10-12).
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Fig. 7: The feedback of the expert interviews.

used to using Bloch Sphere to analyze the qubit state when I try to
understand the rotation angles in an ansatz. However, to my surprise,
VIOLET can somehow combine the qubit states with basis states. This
can directly explain the output which is based on the basis states instead
of the qubit one.” Also, the design principle of the satellite chart gained
positive feedback (E6-8) since it uses qubit as the axis to locate the
basis states, which can significantly reduce the clutter from 2N to N
data entities. Meanwhile, four participants (E1-3, E8) confirmed that
the explanation of the decision boundary is greatly useful, especially
in tracing back the basis states of misclassified data points. E8 also
expressed the unique advantage of the coarse- and fine-grained mode
of augmented heatmap, which provides a quantum-version viewpoint
based on a classical classification heatmap.

Usability and user interaction. The majority of the
participants offered positive feedback regarding the usabil-
ity (ratingmean = 5.68,ratingsd = 0.91) and user interactions
(ratingmean = 5.20,ratingsd = 1.54). Notably, three participants
(E9-11) praised the implementations of a quantum circuit diagram
on the bottom, which can “give users an intuitive representation of
the architecture of the network along with each component (e.g., the
encoding step).” E1-7 confirmed that the system’s interactions are
really smooth and easy to use. Meanwhile, E1 also pointed out that
the line charts of loss and accuracy can offer users with a background
in classical neural networks a portal to become proficient. Also, E12
expressed strong will to recommend VIOLET to his colleagues in his
research lab.

8 Discussion
In this section, we first summarize the lessons we learned during the
development of VIOLET , and then discuss the limitations of VIOLET .

8.1 Lessons
We learned valuable lessons from the system design in collaboration
with domain users.

Extensible benefits of cross-domain designs. According to the
process of expert interviews, the indispensable advantages of our pro-
posed designs have been unequivocally confirmed for the community
of variation quantum circuits. Notably, hinted by the domain expert P2
who studies Grover’s algorithm, the proposed two designs can also be
applied to static quantum circuits and algorithms and further aid their
explainability. For example, satellite chart can allow the detailed anal-
ysis of the single-qubit rotations during the inverse Quantum Fourier
Transform process of Quantum Phase Estimation (QPE) tasks. Also,
the benefits of the augmented heatmap can be transferred to other re-
search domains with the need to explain the expectation values, like
Quantum Simulations and Quantum Error Mitigation. They believed
that the transferable usage of the design could certainly enhance the
impact of visualization in the quantum computing community.

Strong ties between quantum neural work and classical coun-
terparts. By collaborating with domain experts, we realize that
it is of great importance to connect the dots between quantum and
classical neural networks. The reason is that developers and practition-
ers are likely to be familiar with classical machine learning due to its
prevalence. Meanwhile, in accordance with their feedback, the classical
counterparts are more easy-to-understand compared to counter-intuitive
quantum information. Thus, we prefer to use some classical-applicable
methods, such as the Evolution View with a heatmap-like design, to
flatten the learning curves of understanding quantum neural networks.
Also, the statistical charts, like the loss and accuracy line charts, may
also mitigate the unfamiliar impression for novice users.

8.2 Limitations and Future Work
We introduce the limitations of our current work and future plans.

Usage boundary. The evaluation has demonstrated that VIOLET
works well for visualizing variational quantum classifiers. However,
with the rapid growth of other directions in quantum machine learn-
ing, e.g., quantum generative adversarial networks (qGAN), they are
becoming more and more popular. Specifically, although our visual
design, i.e., satellite chart, can support single-qubit state visualization
in other types of ansatz, the tool VIOLET cannot be directly applied
to them for now. Thus, we plan to extend the VIOLET system to en-
able more diverse directions in quantum machine learning. Currently,
the visualization interface along with the visual design (i.e., satellite
chart and augmented heatmap) still has many limitations and can be
further enhanced to fit into more complex tasks, such as tuning the
hyper-parameters.

Flexible user interface. All the participants appreciated the effec-
tiveness of VIOLET in enhancing the transparency of quantum neural
networks. However, more actions to improve the flexibility of the inter-
face are recommended to be integrated. For example, P4 commented
that the interface could enable users to customize the training datasets
by uploading the QASM file. Also, he also suggested the function of the
quantum simulator switching, improving the efficiency of the training
process and data extraction. In future work, it is worth implementing
more interactions to make the user exploration more smooth.

Scalability issue. The usability of VIOLET gained positive feed-
back from all participants. However, there are still some limitations
regarding the scalability of the system. For example, the representation
of original quantum neural networks may suffer from visual clutter
when the circuit depth is large. Also, although we consider utilizing
color to encode the probability of qubit states, which can mitigate the
scalability issues to some extent. but the set of circles in the center may
still introduce overlapping issues when the basis states are numerous.
To tackle these limitations, we plan to integrate more functionality into
the system, such as the grouping of a large amount of data entities.



9 Conclusion
In this work, we identified key challenges and requirements for ex-
plaining the quantum neural networks by working closely with domain
experts. We then introduce VIOLET , a visualization approach devel-
oped for a better understanding of different model components, e.g.,
encoder, ansatz, and measurement. We also introduced two model
designs, namely a satellite chart and augmented heatmap, to facili-
tate the detailed analysis of single-qubit states and expectation value
measurement, respectively. We conducted case studies and expert in-
terviews with 12 domain users. Their ratings and insightful feedback
demonstrate the effectiveness and usability of VIOLET .
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